Effects of fireball sizes and shapes and critical fluctuations on light-nuclei production in heavy-ion collisions

Shanjin Wu

Center for High Energy Physics, Peking University

In collaboration with Koichi Murase, Shian Tang, Shujun Zhao, Huichao Song

QNP2022 - The 9th International Conference on Quarks and Nuclear Physics, 5-9 Sep.2022@Online

Light Nuclei Cluster

Loosely bounded objects (~MeV)

Nucleons close each other in phase-space (homogeneous):

- Phase-space
- nucleons interaction

Coalescence is widely used model

Examples in Heavy-Ion Collisions

- quark + quark -> hardon
- proton + neutron -> light nuclei

Anti Light nuclei as Indirect detection of Dark Matter

Heavy-Ion collisions

Heavy-Ion Collisions

- Quark-Gluon Plasma formed
- Lower collision energy, higher baryon chemical potential

QCD phase diagram

- Lattice QCD (small μ_B finite T):
 - Crossover
- Effective models(large μ_B)
 - 1st order phase trans.
- \rightarrow Critical point
- Lattice QCD: sign problem at large μ_B
- Effective models: parameters dependent
- → Heavy-ion collisions :
 - Changing collision energy, mapping $T \mu$: RHIC(BES),NICA,FAIR,J_PARC...

Light nuclei in heavy ion collisions

H. Liu et al., Phys. Lett. B805, 135452 (2020)

- Light nuclei formed at late stage
- Light nuclei yield ratio shows nonmonotonic behavior

Current models Can't describe the data

W. Zhao et al., PRC (2018)

P.Hillmann et al., 2109.05972

K.Sun et al., PRC (2021)

And others....

Phase-space produced in HIC

No clear non-monotonic on the model so far

Can light nuclei detect critical point effects?

Nucleons close to each other in r space have similar momentum p=>Homogeneity length $l \sim 1/\partial_{\mu}u^{\mu}$

 $R, l \gg \xi$, when not so close to critical regime.

Background is large for N_A

R : Fireball size*l*:homogeneity lengthξ: correlation length

Light Nuclei Yield Ratio (Background+Critical):

Canceling the background

SW, K.Murase, S.Tang, H.Song, 2205.14302

Coalescence model (Background)

SW, K.Murase, S.Tang, H.Song, 2205.14302

$$N_A = g_A \int \left[\prod_i^A d^3 \boldsymbol{r}_i d^3 \boldsymbol{p}_i f(\boldsymbol{r}_i, \boldsymbol{p}_i)\right] W_A(\{\boldsymbol{r}_i, \boldsymbol{p}_i\}_{i=1}^A)$$

Similar Coalescence Model for Dark Matter search

$$F_{\bar{d}}(\sqrt{s}, \vec{k}_{\bar{d}}) = \int F_{(\bar{p}\bar{n})}(\sqrt{s}, \vec{k}_{\bar{p}}, \vec{k}_{\bar{n}}) \ \mathcal{C}(\sqrt{s}, \vec{k}_{\bar{p}}, \vec{k}_{\bar{n}} | \vec{k}_{\bar{d}}) \ d^3\vec{k}_{\bar{n}} \ d^3\vec{k}_{\bar{n}}$$

Coalescence model (Background)

SW, K.Murase, S.Tang, H.Song, 2205.14302

 Wigner function(probability to produce the light nuclei): depends on the relative distance of nucleons in phase space

Light-nuclei yield ratio (Background)

SW, K.Murase, S.Tang, H.Song, 2205.14302

density

Light-nuclei yield ratio (Background)

SW, K.Murase, S.Tang, H.Song, 2205.14302

Light-nuclei yield ratio (Background)

SW, K.Murase, S.Tang, H.Song, 2205.14302

Light Nuclei Ratio Near QCD Critical Point: (Background+Critical)

SW, K.Murase, S.Zhao, H.Song, to appear

Properties of critical point

- Long range correl. (e.g., critical opalescence)
- Singularity
- Universal scaling
- Critical slowing down
- Large fluctuations

$$f = f_0 + \delta f$$

Critical contribution δf in phase-space SW, K.Murase, S.Zhao, H.Song, to appear

$$N_A \sim \left\langle (f_0 + \frac{\delta f}{\delta})^A \right\rangle_{\sigma} \sim f_0^A + \left\langle (\frac{\delta f}{\delta})^2 \right\rangle_{\sigma}^{\beta_2} + \left\langle (\frac{\delta f}{\delta})^3 \right\rangle_{\sigma}^{\beta_3} + \dots + \left\langle (\frac{\delta f}{\delta})^A \right\rangle_{\sigma}^{\beta_4}$$

Critical δf : A constituent nucleons relates to 2,3, ... A-point critical correlator

$$\langle \delta f_1 \delta f_2 \rangle_{\sigma} \sim \Xi(A, 2) \qquad \langle \delta f_1 \delta f_2 \delta f_3 \rangle_{\sigma} \sim \Xi(A, 3) \qquad \langle \delta f_1 \delta f_2 \delta f_3 \delta f_4 \rangle_{\sigma} \sim \Xi(A, 4)$$

Light nuclei yield: Background+Critical

SW, K.Murase, S.Zhao, H.Song, to appear

Light nuclei yield: Background+Critical

SW, K.Murase, S.Zhao, H.Song, to appear

$$R_{A,B}^{1-B,A-1} = \frac{N_{D}^{p-m}N_{B}^{n-1}}{N_{A}^{B-1}}$$

$$\tilde{R}(A, B) \equiv R_{A,B}^{1-B,A-1} - g_{B}^{A-1}g_{A}^{-(B-1)} \sim \mathcal{O}(\xi)$$

$$N_{A} \text{ share a common structure } N_{A} \propto [...]^{A-1}[Bkg + Cri] => \text{ The ratios of } N_{A} \text{ cancel } Bkg \text{ and highlight } Cri$$

$$\tilde{R}(A, B, D) = R_{A,B}^{1-B,A-1} - g_{B}^{A-1}g_{D}^{-(A-1)(B-1)/(D-1)}[R_{A,D}^{1-D,A-1}]^{(B-1)/(D-1)} \sim \mathcal{O}(\xi)$$

$$\tilde{\xi} = R_{A,B}^{1-B,A-1} - g_{B}^{A-1}g_{D}^{-(A-1)(B-1)/(D-1)}[R_{A,D}^{1-D,A-1}]^{(B-1)/(D-1)} \sim \mathcal{O}(\xi)$$

The ratios of N_A proportional to Cri => In the ratios of N_A , large scales R, L are unimportant but ξ matters

NTB = A NTA = 1

R : Fireball size *l*:homogeneity length ξ : correlation length

R

Example: in the Ising critical regime

2022/9/7

20

Conclusion and Outlook

- Phase space distribution in Coalescence Model:
 - Lower order phase-space cumulants (C_{α} , $|\alpha| < 3$) play similar role for different light-nuclei production N_A
 - => Fireball size R, Homogeneity length l play similar role.
 - => Higher order phase-space cumulants (C_{α} , $|\alpha| \ge 3$) are important to light-nuclei yield ratios.
- Proper ratios of light nuclei largely cancel the effects from the scales of fireball size, homogeneity length, etc. But critical correlation length can not be canceled.
- $2 \sim A$ point correlators contribute to N_A , square and higher order terms of 2-point correlator result in dip inside the peak near the critical point.
- This property arises from the fact the coalescence process only depends on the relative distance in phase space and is general can be applied in other context.