A novel approach to calculate GPDs in Lattice QCD from non-symmetric frames

QNP 2022: The 9 $^{\text {th }}$ International Conference on Quarks and Nuclear Physics

Shohini Bhattacharya

BNL

5 September 2022

In Collaboration with:
Krzysztof Cichy (Adam Mickiewicz U.)
Martha Constantinou (Temple U.)
Jack Dodson (Temple U.)
Xiang Gao (ANL)
Andreas Metz (Temple U.)
Swagato Mukherjee (BNL)
Aurora Scapellato (Temple U.)
Fernanda Steffens (Bonn U.)
Yong Zhao (ANL)

Florida State University

Background

Background

Generalized Parton Distributions (GPDs): (See Diehl, arXiv: 0307382)

$$
F^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

Background

Generalized Parton Distributions (GPDs): (See Diehl, arXiv: 0307382)

$$
F^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

Relation with PDFs \& FFs:

Background
What Why? Iow?

Physical processes giving access to GPDs:

Background
What Why? How?

Physical processes giving access to GPDs:

Amplitude:

Physical processes giving access to GPDs:

We need GPD measurements from Lattice QCD

Can we extract these quantities from

 lattice QCD?
Can we extract these quantities from lattice QCD?

Light-cone (standard) correlator $-1 \leq x \leq 1$

$$
F^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}
$$

$$
\times\left.\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z}
$$

$\left.\right|_{z^{+}=\vec{z}_{+}=0}$

- Time dependence : $z^{0}=\frac{1}{\sqrt{2}}\left(z^{+}+z^{-}\right)=\frac{1}{\sqrt{2}} z^{-}$
- Cannot be computed on Euclidean lattice

Figure courtesy: Yong Zhao

Can we extract these quantities from lattice QCD?

Light-cone (standard) correlator $-1 \leq x \leq 1$
$F^{[\mathrm{\Gamma}]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}$

$$
\times\left.\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=\vec{z}_{+}=0}
$$

- Time dependence : $z^{0}=\frac{1}{\sqrt{2}}\left(z^{+}+z^{-}\right)=\frac{1}{\sqrt{2}} z^{-}$
- Cannot be computed on Euclidean lattice

Figure courtesy: Yong Zhao

Correlator for quasi-GPDs $(\mathrm{Ji}, 2013) \quad-\infty \leq x \leq \infty$
$F_{Q}^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}$

$$
\left.\times\left\langle p^{\prime}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}_{\mathrm{Q}}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p, \lambda\rangle \right\rvert\,
$$

- Non-local correlator depending on position z^{3}
- Can be computed on Euclidean lattice

Figure courtesy: Yong Zhao

Can we extract these quantities from lattice QCD?

Light-cone (standard) correlator $-1 \leq x \leq 1$

```
Correlator for quasi-GPDs (Ji, 2013) \(\quad-\infty \leq x \leq \infty\)
```


- Time dependence :

(Xiong, Ji, Zhang, Zhao, 2013/
Stewart, Zhao, 2017/
Izubuchi, Ji, Jin, Stewart, Zhao, 2018/ ...)

Can be computed on Euclidean lattice

Background

Pioneering Lattice QCD calculations of GPDs:
Quasi-distribution formalism

Background

Pioneering Lattice QCD calculations of GPDs:

Quasi-distribution formalism

C. Alexandrou et. al. (PRL 125 (2020) 26, 262001)
C. Alexandrou et. al. (arXiv: 2008.10573)

Pioneering Lattice QCD calculations of GPDs:

Quasi-distribution formalism

C. Alexandrou et. al. (PRL 125 (2020) 26, 262001)
C. Alexandrou et. al. (arXiv: 2008.10573)

Background

Quasi-distribution formalism

Practical drawback

 symmetric between source $\boldsymbol{\&} \sin k$

Lattice QCD calculations in symmetric frames are expensive
C. Alexandrou et. al. (PRL 125 (202

Lattice QCD calculations in symmetric frames are expensive

Background

Background

- Perform Lattice QCD calculations of GPDs in asymmetric frames

Background

Key findings: QCD calculations of GPDs in asymmetric frames

- Lorentz covariant formalism for calculating quasi-GPDs in any frame

Key findings: QCD calculations of GPDs in asymmetric frames

- Lorentz covariant formalism for calculating quasi-GPDs in any frame
- Elimination of (frame-dependent) power corrections allowing faster convergence to light-cone GPDs at LO

Main results

Symmetric \& asymmetric frames

Main results

Symmetric \& asymmetric frames

Approach 1: Can we calculate a quasi-GPD in symmetric frame through an asymmetric frame?

Main results

Symmetric \& asymmetric frames

Main results

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

Yes, since symmetric $\mathcal{\&}$ asymmetric frames are connected via Lorentz transformation

Main results

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

What kind?

Yes, since symmetric $\mathcal{\&}$ asymmetric frames are connected via Lorentz transformation

Main results

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

What kind?

Case 1: Lorentz transformation in the z-direction

$$
\left.\begin{array}{r}
\left(\begin{array}{c}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & 0 & -\gamma \beta \\
0 & 1 & 0 \\
-\gamma \beta & 0 & \gamma
\end{array}\right)
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right)
$$

Main results

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

What kind?

Case 1: Lorentz transformation in the z-direction

$$
\left.\begin{array}{r}
\left(\begin{array}{c}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & 0 & -\gamma \beta \\
0 & 1 & 0 \\
-\gamma \beta & 0 & \gamma
\end{array}\right)
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right), ~ \stackrel{\bar{\psi} \uparrow \psi}{ } \begin{array}{r}
-z^{z} / 2 \quad z^{z} / 2
\end{array}
$$

Main results

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

What kind?

Case 2: Transverse boost in the x-direction

$$
\begin{array}{r}
\left(\begin{array}{c}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & -\gamma \beta & 0 \\
-\gamma \beta & \gamma & 0 \\
0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right) \\
\bar{\psi}{ }^{-z^{z} / 2} \psi \\
\hline
\end{array}
$$

Main results

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

What kind?

Case 2: Transverse boost in the x-direction

$$
\begin{array}{r}
\left(\begin{array}{c}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & -\gamma \beta & 0 \\
-\gamma \beta & \gamma & 0 \\
0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right) \\
\bar{\psi} \uparrow \quad \psi \\
-z^{z} / 2 \quad z^{z} / 2
\end{array}
$$

Results:

$$
\begin{aligned}
& z_{s}^{0}=0 \\
& z_{s}^{z}=z_{a}^{z}
\end{aligned}
$$

Operator distance remains spatial (\& same)

Main results

Symmetric \& asymmetric frames

Related via
Lorentz transformation?

What kind?

Case 2: Transve Approach 1: Can we calculate a quasi-GPD in symmetric frame through an asymmetric frame?

Transverse boost: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

```
-z
```


Main results

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

Related via

Lorentz transformation?

What kind?

Case 2: Transverse boost in the x-direction

$$
\left(\begin{array}{c}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & -\gamma \beta & 0 \\
-\gamma \beta & \gamma & 0 \\
0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right)
$$

Results:

Operator distance remains spatial (\& same)

Main results

Approach 2: Why does it matter in which frame quasi-GPDs are calculated? 1

Key points:

GPDs on the light-cone:

$$
H(x, \xi, t) \rightarrow \int \frac{d z^{-}}{4 \pi} e^{i x P \cdot z}\left\langle p^{\prime}\right| \bar{q} \gamma^{+} q|p\rangle \quad z=\left(0, z^{-}, 0_{\perp}\right)
$$

$$
H(x, \xi, t) \rightarrow \int \frac{d(P \cdot z)}{4 \pi} e^{i x P \cdot z} \frac{1}{P \cdot z}\left\langle p^{\prime}\right| \bar{q} \nLeftarrow q|p\rangle \quad \text { Arbitrary light-like } z
$$

GPDs on the light-cone can be defined in a Lorentz-invariant way

Main results

Approach 2: Why does it matter in which frame quasi-GPDs are calculated? I

Key points:

Figure courtesy: Yong Zhao

GPDs on the light-cone:

$$
H(x, \xi, t) \rightarrow \int \frac{d z^{-}}{4 \pi} e^{i x P \cdot z}\left\langle p^{\prime}\right| \bar{q} \gamma^{+} q|p\rangle \quad z=\left(0, z^{-}, 0_{\perp}\right)
$$

$$
H(x, \xi, t) \rightarrow \int \frac{d(P \cdot z)}{4 \pi} e^{i x P \cdot z} \frac{1}{P \cdot z}\left\langle p^{\prime}\right| \bar{q} \not \not q q|p\rangle \quad \text { Arbitrary light-like } z
$$

GPDs on the light-cone can be defined in a Lorentz-invariant way

Are quasi-GPDs Lorentz-invariant?

Main results

Main results

Definitions of quasi-GPDs

Definition of quasi-GPDs in symmetric frames: (Historical)

$$
\begin{aligned}
\left.F_{\lambda, \lambda^{\prime}}^{0}\right|_{s} & =\left.\left\langle p_{s}^{\prime}, \lambda^{\prime}\right| \bar{q}(-z / 2) \gamma^{0} q(z / 2)\left|p_{s}, \lambda\right\rangle\right|_{z=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}} \\
& =\bar{u}_{s}\left(p_{s}^{\prime}, \lambda^{\prime}\right)\left[\left.\gamma^{0} H_{Q(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s}+\left.\frac{i \sigma^{0 \mu} \Delta_{\mu, s}}{2 M} E_{\mathrm{Q}(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s}\right] u_{s}\left(p_{s}, \lambda\right)
\end{aligned}
$$

Main results

Main results

Main results

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} \boldsymbol{A}_{1}+\frac{z^{\mu}}{M} \boldsymbol{A}_{\mathbf{2}}+\frac{\Delta^{\mu}}{M} \boldsymbol{A}_{3}+\frac{i \sigma^{\mu z}}{M} \boldsymbol{A}_{4}+\frac{i \sigma^{\mu \Delta}}{M} \boldsymbol{A}_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{8}\right] u(p, \lambda)
$$

Vector operator $F_{\lambda, \lambda^{\prime}}^{\mu}=\left.\left\langle p^{\prime}, \lambda^{\prime}\right| \bar{q}(-z / 2) \gamma^{\mu} q(z / 2)|p, \lambda\rangle\right|_{z=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}$

Main results

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Vector operator)

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} \boldsymbol{A}_{1}+\frac{z^{\mu}}{M} \boldsymbol{A}_{\mathbf{2}}+\frac{\Delta^{\mu}}{M} \boldsymbol{A}_{3}+\frac{i \sigma^{\mu z}}{M} \boldsymbol{A}_{4}+\frac{i \sigma^{\mu \Delta}}{M} \boldsymbol{A}_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{8}\right] u(p, \lambda)
$$

Features:

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures
- $\underline{8 \text { Lorentz-invariant amplitudes (or Form Factors) }} A_{i} \equiv A_{i}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)$

Validating the frame-independence of A's from Lattice QCD

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Vector operator)

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} \boldsymbol{A}_{1}+\frac{z^{\mu}}{M} \boldsymbol{A}_{2}+\frac{\Delta^{\mu}}{M} \boldsymbol{A}_{3}+\frac{i \sigma^{\mu z}}{M} \boldsymbol{A}_{4}+\frac{i \sigma^{\mu \Delta}}{M} \boldsymbol{A}_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{8}\right] u(p, \lambda)
$$

Features:

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures
- $\underline{8 \text { Lorentz-invariant amplitudes (or Form Factors) }} A_{i} \equiv A_{i}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)$

Validating the frame-independence of A's from Lattice QCD

Features:

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures
- $\underline{8 \text { Lorentz-invariant amplitudes (or Form Factors) }} A_{i} \equiv A_{i}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)$

Validating the frame-independence of A's from Lattice QCD

Validating the frame-independence of A's from Lattice QCD

Main results

Exploring historical definitions of quasi-GPDs

Mapping Form Factors to the historical definitions of quasi-GPDs:

Main results

Exploring historical definitions of quasi-GPDs

Mapping Form Factors to the historical definitions of quasi-GPDs:
Symmetric frame:

$$
\begin{aligned}
\left.H_{Q(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s} & =A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3}-\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P_{s}^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) A_{6} \\
& +\left(\frac{\left(\Delta_{s}^{0} z^{3}\right.}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) A_{8}
\end{aligned}
$$

Main results

Exploring historical definitions of quasi-GPDs

Mapping Form Factors to the historical definitions of quasi-GPDs:
Symmetric frame:

$$
\begin{aligned}
\left.H_{\mathrm{Q}(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s} & =A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3}-\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P_{s}^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) A_{6} \\
& +\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) A_{8}
\end{aligned}
$$

Asymmetric frame:

$$
\begin{aligned}
& \left.H_{\mathrm{Q}(0)}\right|_{a}\left(z, P_{a}, \Delta_{a}\right)=\boldsymbol{A}_{1}+\frac{\Delta_{a}^{0}}{P_{a v g, a}^{0}} \boldsymbol{A}_{\mathbf{3}}-\left(\frac{\Delta_{a}^{0} z^{3}}{2 P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{4 P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}\right) \boldsymbol{A}_{4} \\
& +\left(\frac{\left(\Delta_{a}^{0}\right)^{2} z^{3}}{2 M^{2} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{4 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{P_{a v g, a}^{0} \Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{a v g, a}^{3}}\right) \boldsymbol{A}_{6} \\
& +\left(\frac{\left(\Delta_{a}^{0}\right)^{3} z^{3}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{3} \Delta_{a}^{3} z^{3}}{4 M^{2} P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2} \Delta_{a}^{0}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}\right) \boldsymbol{A}_{8}
\end{aligned}
$$

Main results

Exploring historical definitions of quasi-GPDs

Frame-dependent expressions: Explicit non-invariance from kinematics factors

Symmetric frame:

$$
\begin{aligned}
\left.H_{\mathrm{Q}(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s} & =A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3}-\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P_{s}^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0} z^{2} z^{3}\right.}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) A_{6} \\
& +\left(\frac{\left(\Delta_{s}^{0} z^{3}\right.}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) A_{8}
\end{aligned}
$$

Asymmetric frame:

$$
\begin{aligned}
& \left.H_{Q(0)}\right|_{a}\left(z, P_{a}, \Delta_{a}\right)=A_{1}+\frac{\Delta_{a}^{0}}{P_{a v g}^{0}, a} A_{3}-\left(\frac{\Delta_{a}^{0} z^{3}}{2 P_{\text {avg }, a}^{0} P_{\text {avg }, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{4 P_{\text {avg }, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}\right) A_{4} \\
& +\left(\frac{\left(\Delta_{a}^{0}\right)^{2} z^{3}}{2 M^{2} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{4 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{P_{\text {avg }, a}^{0} \Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{a v g, a}^{3}}\right) \boldsymbol{A}_{6} \\
& +\left(\frac{\left(\Delta_{a}^{3}\right)^{3}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{\text {avg }, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{3} \Delta_{a}^{3} z^{3}}{4 M^{2} P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2} \Delta_{a}^{0}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}\right) \boldsymbol{A}_{8}
\end{aligned}
$$

Main results

Exploring historical definitions of quasi-GPDs

Frame-dependent expressions: Explicit non-invariance from kinematics factors

Reminder: \square Lattice QCD results

Main results

Light-cone GPDs

Mapping Form Factors to the light-cone GPDs: (Sample results)

Main results

Light-cone GPDs

Mapping Form Factors to the light-cone GPDs: (Sample results)

Lorentz-invariant definition:

$$
H(x, \xi, t) \rightarrow \int \frac{d(P \cdot z)}{4 \pi} e^{i x P \cdot z} \frac{1}{P \cdot z}\left\langle p^{\prime}\right| \bar{q} \not \approx q|p\rangle
$$

Relation between light-cone GPD H \& Form Factors:

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Lorentz-invariant expression

Main results
Relation between light-cone GPD H \& Form Factors: Lorentz covariant formalism
Lorentz-invariant definition of quasi Lorentz cos
-GPDS \& Form Factors: (Sample results)

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z}
$$

Symmetric frame:

$$
\begin{aligned}
\left.H_{Q(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s} & =A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3}-\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P_{s}^{3}} \boldsymbol{A}_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) \boldsymbol{A}_{6} \\
& +\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) \boldsymbol{A}_{8}
\end{aligned}
$$

Asymmetric frame:

$$
\begin{aligned}
& \left.H_{\mathrm{Q}(0)}\right|_{a}\left(z, P_{a}, \Delta_{a}\right)=\boldsymbol{A}_{1}+\frac{\Delta_{a}^{0}}{P_{a v g, a}^{0}} \boldsymbol{A}_{\mathbf{3}}-\left(\frac{\Delta_{a}^{0} z^{3}}{2 P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{4 P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}\right) \boldsymbol{A}_{4} \\
& +\left(\frac{\left(\Delta_{a}^{0}\right)^{2} z^{3}}{2 M^{2} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{4 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{P_{a v g, a}^{0} \Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{a v g, a}^{3}}\right) \boldsymbol{A}_{6} \\
& +\left(\frac{\left(\Delta_{a}^{0}\right)^{3} z^{3}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{3} \Delta_{a}^{3} z^{3}}{4 M^{2} P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)^{2}} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2} \Delta_{a}^{0}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}\right) \boldsymbol{A}_{8}
\end{aligned}
$$

 -upDs \& Form Factors: (Sample results)

Relation between light-cone GPD H \& Form Factors:

Symmetric frame:

$$
\begin{array}{r}
\left.H_{Q(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s}=A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3} \frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) A_{6} \\
+\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) A_{8}
\end{array}
$$

Contamination from frame-dependent power corrections
Asymmetric frame:

Sketch of the essence of a Lorentz covariant formalism

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3}
$$

Symmetric frame:

$$
\begin{array}{r}
\left.H_{Q(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s}=A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3} \frac{\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) A_{6}}{+\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) A_{8}}
\end{array}
$$

Asymmetric frame:

Contamination from frame-dependent power corrections

 In the large-momentum limit, these expressions reduce to light-cone results

Main results

Interlude:

Quasi-Grus a rorm ractors: (Sample results)

Relation between light-cone GPD H \& Form Factors:

Let's go back to PDFs
 Let's go back to PDe:

Lorentz covariant formalism

Contamination from frame-dependent power corrections
Asymmetric frame:
In the large-momentum limit, these expressions reduce to light-cone results

Main results

Relation between light-cone GPD H \& Form Factors:

Interlude:

Quasi-Grus a rorm ractors: (Sample results)

Let's go back to PDFs

arXiv: 1705.01488

Quasi-PDFs, momentum distributions and pseudo-PDFs
A. V. Radyushkin

Old Dominion University, Norfolk, VA 23529, USA and
Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

$$
\begin{equation*}
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \tag{12}
\end{equation*}
$$

type, where $\hat{E}(0, z ; A)$ is the standard $0 \rightarrow z$ straightline gauge link in the quark (fundamental) representation. These matrix elements may be decomposed into p^{α} and z^{α} parts:

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathcal{M}^{\alpha}(z, p)= & 2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right) \\
& +z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
\end{aligned}
\end{aligned}
$$

2 Amplitudes
(13)

The $\mathcal{M}_{p}\left(-(z p),-z^{2}\right)$ part gives the twist-2 distribution when $z^{2} \rightarrow 0$, while $\mathcal{M}_{z}\left((z p),-z^{2}\right)$ is a purely highertwist contamination, and it is better to get rid of it.

Quntanimiatuin runir iname-uependent power corrections
m limit, these expressions reduce to light-cone results

Main results

Relation between light-cone GPD H \& Form Factors:

Interlude:

Quasi-Gros a rorm ractors: (Sample results)

Let's go back to PDFs

arXiv: 1705.01488

Quasi-PDFs, momentum distributions and pseudo-PDFs

Old Dominion University, Norfolk, NA 2352, Nas

$$
\begin{equation*}
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \tag{12}
\end{equation*}
$$

type, where $\hat{E}(0, z ; A)$ is the standard $0 \rightarrow z$ straightline gauge link in the quark (fundamental) representation. These matrix elements may be decomposed into p^{α} and z^{α} parts:

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathcal{M}^{\alpha}(z, p)= & 2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right) \\
& +z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
\end{aligned}
\end{aligned}
$$

2 Amplitudes
(13)

The $\mathcal{M}_{p}\left(-(z p),-z^{2}\right)$ part gives the twist-2 distribution when $z^{2} \rightarrow 0$, while $\mathcal{M}_{z}\left((z p),-z^{2}\right)$ is a purely highertwist contamination, and it is better to get rid of it.

If one takes $z=\left(z_{-}, z_{\perp}\right)$ in the $\alpha=+$ component of \mathcal{M}^{α}, the z^{α}-part drops out, and one can introduce a
imim, mese expressions reutuce to irgit-cone results

Main results

Interlude:

Quasi-Gros a rorm ractors: (Sample results)

Let's go back to PDFs

arXiv: 1705.01488

Quasi-PDFs, momentum distributions and pseudo-PDFs

$$
\begin{equation*}
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \tag{12}
\end{equation*}
$$

type, where $\hat{E}(0, z ; A)$ is the standard $0 \rightarrow z$ straightline gauge link in the quark (fundamental) representation. These matrix elements may be decomposed into p^{α} and z^{α} parts:

$$
\begin{aligned}
\mathcal{M}^{\alpha}(z, p)= & 2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right) \\
& +z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
\end{aligned}
$$

The $\mathcal{M}_{p}\left(-(z p),-z^{2}\right)$ part gives the twist-2 distribution when $z^{2} \rightarrow 0$, while $\mathcal{M}_{z}\left((z p),-z^{2}\right)$ is a purely highertwist contamination, and it is better to get rid of it. and z^{α} parts:
(13)
A. V. Radyushkin

Old Dominion University, Norfolk, VA 23529, USA and
Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

Lorentz covariant formalism

Cumtammatum num name-uependent power corrections

If one takes $z=\left(z_{-}, z_{\perp}\right)$ in the $\alpha=+$ component of \mathcal{M}^{α}, the z^{α}-part drops out, and one can introduce a
ilmit, तrese expressiuns reutuce to irgit-cone results

2 Amplitudes

 formula (6). For quasi-distributions, the easiest way to remove the z^{α} contamination is to take the time component of $\mathcal{M}^{\alpha}\left(z=z_{3}, p\right)$ and define

$$
\begin{equation*}
\mathcal{M}^{0}\left(z_{3}, p\right)=2 p^{0} \int_{-1}^{1} d y Q(y, P) e^{i y P z_{3}} \tag{14}
\end{equation*}
$$

Therefore, γ^{0} is better behaved than γ^{3} with respect to power corrections

Main results

Relation between light-cone GPD H \& Form Factors:
Interlude:
Quasi-Gros a rorm ractors: (Sample results)

Let's go back to PDFs

arXiv: 1705.01488

Quasi-PDFs, momentum distributions and pseudo-PDFs

Old Domini Statement needs a qualifier: Situation more complicated for quasi-GPDs

Thomas Jefferson Natio

$$
\begin{equation*}
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \tag{12}
\end{equation*}
$$

type, where $\hat{E}(0, z ; A)$ is the standard $0 \rightarrow z$ straightline gauge link in the quark (fundamental) representation. These matrix elements may be decomposed into p^{α} and z^{α} parts:

$$
\begin{aligned}
& \text { (1ats: } \\
& \begin{aligned}
\mathcal{M}^{\alpha}(z, p)= & 2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right) \\
& +z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
\end{aligned}
\end{aligned}
$$

2 Amplitudes
(13)

The $\mathcal{M}_{p}\left(-(z p),-z^{2}\right)$ part gives the twist-2 distribution when $z^{2} \rightarrow 0$, while $\mathcal{M}_{z}\left((z p),-z^{2}\right)$ is a purely highertwist contamination, and it is better to get rid of it.

Lorentz covariant formalism

Main results
Relation between light-cone GPD H \& Form Factors:
Sketch of the essence of a
Lorentz covariant formalism

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3}
$$

Contrary to quasi-PDFs, γ^{0} operator for quasi-GPDs is plagued with (frame-dependent) power corrections

$$
\begin{array}{r}
\left.H_{\mathrm{Q}(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s}=A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3} \frac{\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) A_{6}}{+\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) A_{8}}
\end{array}
$$

Asymmetric frame:
$\left.H_{Q(0)}\right|_{a}\left(z, P_{a}, \Delta_{a}\right)=A_{1}+\frac{\Delta_{a}^{0}}{P_{a v g, a}^{0}} A_{3}-\frac{\Delta_{a}^{0} z^{3}}{2 P_{a v g, a}^{0} P_{a v q, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}-}{2 P_{a v g, a}^{3}} \frac{\Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{4 P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}\right) A_{4}}$
$+\left(\frac{\left(\Delta^{0}\right)^{2}, 3}{2 M^{2} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{4 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{P_{a v g, a}^{0} \Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{a v g, a}^{3}}\right) A_{6}$
$\left(\frac{\left(\Delta_{a}^{0}\right)^{3} z^{3}}{2 M^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{3} \Delta_{a}^{3} z^{3}}{4 M^{2} P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2} \Delta_{a}^{0}}{2 M^{2} P_{a v g, a}^{0} P_{a v a}^{3}}\right)$ Al

Symmetric frame:

In spirit of what's done for PDFs:
You can think of eliminating power corrections by the addition of other operators:

Main finding:

$$
\left(\gamma^{1}, \gamma^{2}\right)
$$

Lorentz-invariant definition of quasi-GPDs:
Schematic structure:

Note: Here c's are frame-dependent kinematic factors that cancel frame-dependent power corrections to project quasi-GPD to the light-cone result

Agreement of results for $\mathbf{H} \boldsymbol{\&} \mathbf{E}$ between frames confirmed by Lattice results

Main results

Main results

Lorentz covariant formalism

Sketch of the essence of a
Lorentz-invariant definition of quasi-GPDs

Main results

Lorentz covariant formalism

Sketch of the essence of a
Lorentz-invariant definition of quasi-GPDs

Main results

Lorentz covariant formalism

Sketch of the essence of a Lorentz-invariant definition of quasi-GPDs

Matching equation:

$$
H_{\mathrm{Q}}\left(z \cdot P, z \cdot \Delta, t, z^{2}, \mu\right)=\int_{-1}^{1} d u \bar{C}\left(u, z \cdot P, z \cdot \Delta, z^{2}, \mu^{2}\right) H(u, z \cdot P, z \cdot \Delta, t, \mu)
$$

Essence of matching: Equivalence of light-cone \& quasi-GPDs at LO

$$
\lim _{z^{2} \rightarrow 0} H_{\mathrm{Q}}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=H\left(z \cdot P, z \cdot \Delta, \Delta^{2}\right)
$$

Relation between light-cone GPD H \& Form Factors:

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3}
$$

Natural candidate:

Lorentz-invariant generalization of LC definition to $z^{2} \neq 0$
$H_{\mathrm{Q}}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} \boldsymbol{A}_{3}$

Main results

Lorentz covariant formalism

Sketch of the essence of a
L Key points: definition of quasi-GPDs

1) Lorentz-invariant generalization of $\mathbf{L C}$ definition to $z^{2} \neq 0$ should converge faster at $\mathbf{L O}$

Essence of matching: Equivalence of light-cone $\&$ quasi-GPDs at LO

$$
\lim _{z^{2} \rightarrow 0} H_{\mathrm{Q}}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=H\left(z \cdot P, z \cdot \Delta, \Delta^{2}\right)
$$

Relation between light-cone GPD H \& Form Factors:

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Numerical comparison between Lorentz invariant and historical definitions of quasi-GPDs:


```
Sample results for E
```

Key points: definition of quasi-GP1)

1) Lorentz-invariant generalization of $L C$ definition to $z^{2} \neq 0$ should converge faster at $L O$
2) Both sides Lorentz invariant \rightarrow NLO differences suppressed by frame-independent power corrections

Essence of matching: Equivalence of light-cone \& quasi-GPDs at LO

$$
\lim _{z^{2} \rightarrow 0} H_{\mathrm{Q}}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=H\left(z \cdot P, z \cdot \Delta, \Delta^{2}\right)
$$

Numerical comparison between Lorentz invariant and historical definitions of quasi-GPDs:

$$
\lceil
$$

Numerical comparison between Lorentz invariant and historical definitions of quasi-GPDs:
Γ_{S}

Summary

Connecting dots: Ending with what I started with

Summary

Summary

Transverse boost: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

Summary

Connecting dots: Ending with what I started with

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

Summary

Connecting dots: Ending with what I started with

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

All

momentum transfer to source

$-z / 2 \quad \boxed{z / 2}$ (Vector operator)

Key findings:

Summary

Connecting dots: Ending with what I started with
Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

All

momentum transfer to source

3)

source

Key findings:
 QCD

$$
\mathrm{HQ}_{\mathrm{a}}\left(z \cdot \mathrm{P}, z \cdot \Delta, \mathrm{t}=\Delta^{2}, z^{2}\right)=\mathrm{A}_{1}+\frac{\mathrm{P}_{\mathrm{avg}, \mathrm{~s}}}{}
$$

- Lorentz covariant formalism for calculating quasi-GPDs in any frame
- Elimination of (frame-dependent) power corrections allowing faster convergence to light-cone GPDs at LO

Summary

Connecting dots: Ending with what I started with
Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

All

momentum transfer to source
3)

Key findings:

source

Lorentz invariant definition leads to more precise results for \mathbf{E}

- Lorentz cov:

Backup slides

Main results

Renormalization: Sketch

Few words on operators:

- Schematic structure of Lorentz non-invariant quasi-GPD: \square
$H_{\mathrm{Q}} \rightarrow c\left(\left\langle\bar{\psi} \gamma^{0} \psi\right\rangle\right.$

How to renormalize?

Main results

Renormalization: Sketch

Few words on operators:

- Schematic structure of Lorentz non-invariant quasi-GPD: \square
- Schematic structure of Lorentz invariant quasi-GPD:

Few words on renormalization:
Renormalization factors are different for $\left\langle\bar{\psi} \gamma^{0} \psi\right\rangle,\left\langle\bar{\psi} \gamma^{1} \psi\right\rangle,\left\langle\bar{\psi} \gamma^{2} \psi\right\rangle$
--- UV-divergent terms same
--- Frame-independent
-- Frame-independent

- Matching: --- Available for only γ^{0}
--- Takes care of finite terms for γ^{0}
- Strategy to renormalize: Use Renormalization factor for operator whose matching is known

