Answering Questions in Neutrino Physics

The Neutrino sector might hint to physics beyond the Standard Model

Neutrino oscillate from one flavour to another Imposing many questions:

What are the neutrino masses?

Are the neutrinos their own anti particles?

Is CP symmetry violated?

β Decay Experiments

 v_e

 ν_{μ}

 v_{τ}

θνββ Decay

Oscillation Experiments

What is their mass ordering?

Are there more than the 3 light neutrinos?

Introduction to Neutrino Oscillations

Oscillation experiments aim to answer the CP nature and the mass ordering of neutrinos as well as search for new physics

Introduction to Neutrino Oscillations

$$P(v_{\mu} \to v_{x}) = \sin^{2}(2\theta) \times \sin^{2}\left(\frac{\Delta m^{2}L}{4E_{v}}\right)$$

$$P(v_{\mu} \to v_{x}) = \sin^{2}(2\theta) \times \sin^{2}\left(\frac{\Delta m^{2}L}{4E_{v}^{true}}\right)$$

$$P(v_{\mu} \to v_{x}) = \sin^{2}(2\theta) \times \sin^{2}\left(\frac{\Delta m^{2}L}{4E_{v}^{real}}\right)$$

Introduction to Neutrino Oscillations

Long Baseline 1300 km, active mass ~70 kton Sensitivity to: θ 23, θ 13, δ CP, Mass ordering

LAr Time Projection Chamber Active mass : 85 tons Triggered by PMTs, 3 wire planes with 3 mm spacing impeccable spatial resolution, calorimetric measurement

Incoming Energy Reconstruction

Cherenkov detectors:

Assuming QE interaction

Using lepton only

$$E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta_l)}$$

Tracking detectors: Calorimetric sum Using All detected particles

$$E_{\text{cal}} = E_l + E_p^{\text{kin}} + \epsilon$$
[1p0 π]

 ϵ is the nucleon separation energy ~ 20 MeV

Lepton-Nucleus Interaction Modelling

E_{ν} Reco Requires Interaction Modeling

Lepton-Nucleus Interaction Modelling

Neutrino event generators simulating vA interaction

Using semi-classical / empirical / phenomenological based model All with many free parameters

Factorisation of

- Initial state
- Each interaction mechanism separately
- Final State Interactions

The challenge - next generation high precision

EV Electrons for Neutrinos

Using electron scattering data to reduce neutrino oscillation systematic uncertainties

- Test neutrino energy reconstruction
- Constrain lepton-nucleus interaction models

visit: <u>www.e4nu.com</u>

eav Why electrons?

Electrons and Neutrinos have:

- Identical initial nuclear state
- Same Final State Interactions
- Similar interactions vector vs. vector + axial

Useful to constrain model uncertainties

eav Why electrons?

Electrons and Neutrinos have:

- Identical initial nuclear state
- Same Final State Interactions
- Similar interactions vector vs. vector + axial

Useful to constrain model uncertainties

е

Similar eA and vA Cross sections

Test on $1p0\pi$ event selection

Phys.Rev.D 103 (2021) 113003

Electron were weighted by $1/Q^4$

23

Inclusive v data and Generators

Phys. Rev. Lett. 123, 131801 (2019)

Inclusive e data and generators

CLAS A(e,e'p) Data E2a

First test of neutrino energy reconstruction with exclusive data!

Targets: ⁴He, ¹²C, ⁵⁶Fe

T2 (H_2O) , (CH), D(Ar)

Energies:

1.1, 2.2, 4.4 GeV

 v_{μ} flux (arb.)

Detection thresholds: 300 MeV/c for p150 MeV/c for $P_{\pi^{+/-}}$ 500 MeV/c for P_{π^0} Comparable to those in

26

$\overrightarrow{\mathcal{C4V}}$ 1p0 π Event Selection

Focus on Quasi Elastic events:

1 proton above 300 MeV/c

no additional hadrons above detection threshold:

150 MeV/c for $P_{\pi^{+/-}}$

500 MeV/c for P_{π^0}

Inclusive Energy Reconstruction

³¹ Nature **599**, 565 (2021)

³² Nature **599**, 565 (2021)

³³ Nature **599**, 565 (2021)

Focusing on different reaction mechanisms Standard Transverse Variables

Sensitive to hit nucleon momentum δα_T Sensitive to Final State Interactions

δp_T

-p^µ

δα_т

p^p_T

Transverse missing momentum

5 Nature **599**, 565 (2021)

p_T sensitivity to interaction mechanisms

Transverse Kinematic Variables - δα_T

MC vs. (e,e'p) Transverse Variables

Low $\alpha T < 45$

QE enhanced region

High $135 < \alpha T < 180$

Non QE contributions

Similarities between e and v

Small $\delta \alpha_T$

Large $\delta \alpha_T$

Cav Looking forward to new results

Working on:

Multi differential analysis

Pion production

Two nucleon final state

All nuclei and energies

New Data from @LAS12

Acceptance down to 5° Q² > 0.04 GeV² x10 luminosity $[10^{35} \text{ cm}^{-2}\text{s}^{-1}]$ Keep low threshold, better neutron coverage Targets: ²D, ⁴He, ¹²C, ¹⁶O, ⁴⁰Ar, ⁴⁰Ca (1,) 2, 4, 6 GeV (relevant for DUNE)

Overwhelming support from:

Justin Estee Joshua Barrow

Next step RG-M @LAS12

Joshua Barrow

Complementary efforts

Collaborations	Kinematics	Targets	Scattering	Publications
E12-14-012 (JLab)	$E_e = 2.222 \mathrm{GeV}$	Ar, Ti	(e, e')	Phys. Rev. C 99 , 054608 Phys.Rev.D 105 112002
(Data collected: 2017)	$ heta_e=$ 15.5, 17.5,	Al, C	(e, e'p)	
	20.0, 21.5			5
Jefferson Lab	$ heta_p=$ -39.0, -44.0,			
	-44.5, -47.0			
	-50.0			
e4nu/CLAS (JLab)	$E_e =$ 1, 2, 4, 6 GeV	H, D, He,	(e, e')	
(Data collected: 1999, 2022)	$ heta_e > 5$	C, Ar, ⁴⁰ Ca,	e,p,n,π,γ	Nature 599 , 565
		⁴⁸ Ca, Fe, Sn	in the final state	Phys.Rev.D 103 113003
Jefferson Lab				
A1 (MAMI)	$E_e=$ 1.6 GeV	H, D, He	(e,e')	
(Data collected:2020)		C, O, Al	2 additional	
(More data planned)		Ca, Ar, Xe	charged particles	
LDMX (SLAC)	$E_e = 4.0 \mathrm{GeV}$		(e,e')	
(Planned)	$ heta_e <$ 40		e,p,n,π	
JLAU			in the final state	
eALBA	$E_e=$ 500 MeV	C, CH	(e,e')	
(Planned) ALBA	- few GeV	Be, Ca		

Adaptation from Proceedings of the US Community Snowmass2021 arXiv:2203.06853v1 [hep-ex]

e4nu and DUNE

The *eav* Collaboration

visit <u>www.e4nu.com</u>

Contact: Minerba betan009@fnal.gov, Adi adishka@tauex.tau.ac.il

Summary

vA interaction uncertainties limit oscillation parameters extraction

First use of semi-exclusive eA data to explore vA uncertainties

- Energy reconstruction
- Comparison to event generators

Electron scattering data will help is helping

е

Thank you for your attention

Background Subtraction

Different interaction lead to multi-hadron final states

Gaps can make them loop like QE-like events with outgoing $1\mu 1p$

Background Subtraction

Different interaction lead to multi-hadron final states

Gaps can make them loop like QE-like events with outgoing $1\mu 1p$

Data Driven Background Subtraction

- Using measured (e,e'p π) events
- Rotate p, π around **q**
- Determine event acceptance
- Subtract (e,e'p π) contribution

Radiative effects

A first implementation of the radiative corrections to GENIE to account for the following processes:

Simplistic implementation based on Mo & Tsai for ep interactions

Adding radiative effects to GENIE

