Hadron Physics at J-PARC

M. Naruki (Kyoto Univ.)

Introduction

- J-PARC Hadron Experimental Facility
- Recent highlights
- New activities
- Future prospects
 - Hadron Hall Extension Project

J-PARC bird's-eye view

Tokai, Ibaraki

Hadron Experimental Facility

60m	Name	Particles	P _{max} (GeV/c)	ntensity (/spill)
KI.8	K1.8	п, К	2.0	106 K-
KI.8BR	KI.8BR	п, К	1.1	10 ⁶ K ⁻
	KL	K ⁰		
	High-p	proton	31	10 ¹⁰ P
ngn-p	High-p2	π/Κ	20	10 ⁶ K ⁻
Protons TI target COMET				4

Hadron Physics at J-PARC

Quark degrees of freedom - Nuclear Force

- Observation of Ξ - nucleus bound system (E07)

- emulsion & spectrometer experiment (hybrid)
- Ξ hypernucleus event (IBUKI event)
 - Uniquely identified decay mode
 - $= \Xi^- + {}^{14}N \rightarrow {}^{10}_{\Lambda}Be + {}^{5}_{\Lambda}He$
 - For the first time E-nucleus interaction is measured precisely
 - Binding energy $B_{\pm} = 1.27 \pm 0.21$ MeV
 - o likely to be Coulomb-assisted Ip state

weak EN-AA coupling

Hayakawa et al. PRL126, 062501 (2021) Editor's suggestion, Cover page

- Xi hypernucleus in future (E70)

¹²/_ΞBe is produced in ¹²C(K⁻,K⁺)
 Far better resolution of 2 MeV

 cf. BNL E885 ΔM=14 MeV

 New spectrometer S-2S is now being constructed (~2022).
 Binding energy & width

Ξ- / double Λ hypernuclei will be studied for hydrogen
→H. Fujioka, Nuclear Strangeness, 9/9

Observation of K-pp bound state (EI5)

Hyperon-Nucleon Scattering (E40)

- \bigcirc differential cross section of $\Sigma^- p \to \Lambda n$
- Σ produced in LH2(1.33 π^-, K^+)
- Secondary reaction is identified with spectrometer

of. topological information w/ bubble chamber

- new-standard technique
- much better accuracy

 \rightarrow 9/9 morning, Nuclear Strangeness session

New beamline and activities

Ongoing experiment at newly constructed beamline

High-momentum beam line

In-medium Spectral Information on Vector Mesons - EI6 -

• Explore the world of light quarks

- o determine quark and gluon condensations
- key symmetry chiral symmetry
- Eeptonic probe di-lepton
 - clean signal from complicated hadronic system

Next-generation experiment

- catch up e+/e- pairs produced in 30 GeV p+A interactions
- w/ J-PARC intense beam & state-of-the-art experimental techniques

P. Gubler and K. Ohtani, Phys. Rev. D 90, 094002 (2014).

Dilepton measurement at J-PARC

- 30GeV pA→ ϕ X→ee
- systematic studies
 - velocity/target dependences

proton beam

- High statistics
 - I0¹⁰ p/spill (2 seconds) x 0.1% targets (C,Cu,Pb)

high rate capability I00k channel

High mass resolution $\Delta M = 7 \text{ MeV}$

spectrometer

Tracking devices
 SSD
 GEM Tracker (GTR)

double-stage Electron ID counters
 Hadron Blind Detector (HBD)

-Lead-glass calorimeter (LG)

Hadron Blind Detector (HBD)

SSD

Csl evaporated GEM (inside the gas chamber)

Lead-glass calorimeter

rejection power : 3x10-4

SF6W lead-glass

3 size of GEM (10, 20 and 30 cm)

GEM Tracker

momentum dependence of mass

2020-2021 RUN0 -- 320 hours, C/Cu targets Beamline / Detector commissioning

we are ready

RUN 1 (8 modules)

RUN 2 (26 modules)

2023 RUNI -- I280 hours, C/Cu targets O Physics run 15k of φ mesons

- Output State in the second state of the sec
 - nuclear size & velocity dependences
 - dispersion relation

Current Status

- quality of extracted primary beam profile & global time structure
 - detector performance
 - high-rate capability (10MHz interaction)
 - vertex reconstruction
 - electrons ID

22

20

Beam Intensity at high-momentum secondary beamline

Design Intensity [/spill (5.2 sec)] @ 15 kW loss

Strange&Charm Baryon Spectroscopy

- Multi Purpose Spectrometer

High resolution & Large acceptance spectrometer

- Large acceptance (50% for K* / 60% for D*)
- Detector configuration for high-resolution (dp/p=0.2%)
 - Possible decay mode measurement: $Y_c^* \rightarrow Y_c + \pi$...
- Multi-particle detection in the high rate environment

Expected spectrum: $\sigma(\pi p \rightarrow D^* Y_c) = I nb$

 Y_c^{*+} yields: 2k events assuming $\sigma_{G.S}$. = 1 nb in 100 days • $\Delta M=8 \text{ MeV}$

5GeV/c $K^-p \rightarrow K^+X$ Jenkins at al., PRL51('83)951

Ξ(1820) Δ**M~30Me**V

E* Expected spectrum

Missing mass & decay measurements

- cross section, mass and width with ΔM of 7 MeV
- S/N ratio: 0.2-2.0 in 2.0-2.5 GeV/c² region

Origin of Matter

Matter in Extreme conditions

hyperon puzzle in neutron stars

flavor symmetry breaking hadron interaction

Hypernuclei spectroscopy

fundamental structure of matter

chiral symmetry breaking quark interaction Hadron spectroscopy

Birth of Matter

matter dominated universe

CP symmetry violation weak interaction

Kaon rare decav

- HIHR (High Intensity & High Resolution BL)

Dispersion matching beamline at GeV-region

- much better momentum resolution of $\Delta p/p=10^{-4} \rightarrow \Delta E=0.4 MeV$ (FWHM)
- precise measurement of Λ hypernuclei

Provides separated K/π beams up to 10 GeV/c

- utilized with RF separators
- Baryon spectroscopies
 Ξ/Ω/Λ_c baryons
- ON scattering
- \odot $\Xi Y / \Lambda \Lambda \Lambda$ interactions

• Listed as 1st priority in KEK Project Implementation Plan 2022

	FY2022	FY2023	FY2024	FY2025	FY2026	FY2027	FY2028	FY2029	FY2030	FY2031
Hadron Hall		with SX	T Current Pr (Power to	he Ex ograms owards 100	xtens	sion l Hall Ex	Proje xtensior	CC Exp with	oanded Prog more bear	grams n lines
COMET	constr- uction	C	ΟΜΕΤΙ		cc	MET2 Co	nstruction		СОМ	ET2

- J-PARC is a multi-purpose experimental facility for a wide range of physics.
- A bunch of results have been reported from J-PARC especially on strangeness physics.
- A new high-momentum beamline is now in operation. The dilepton measurement has been started successfully.
- Systematic $\Xi/\Lambda_c/\Omega$ baryon spectroscopies will be started soon.

29