QNP2022, Sep. 5-9, 2022

From hadrons to quarks in neutron stars

Astro condensed matter

OCD

Toru Kojo (Tohoku Univ.)

Refs) Baym-Hatsuda-TK-Powell-Song-Takatsuka, Review on neutron stars (2018)
 TK, "Stiffening of matter in quark-hadron continuity" PRD (2021)
 TK-Baym-Hatsuda, "QHC21" ApJ (2022)

State of matter: overview

~ I.4 M

few meson exchange

nucleons only

ab-initio nuclear cal.

laboratory experiments

steady progress

٠

- many-quark exchange
- structural change,...
- hyperons, Δ , ...

3-body)

most difficult

(d.o.f ??)

(d.o.f : quasi-particles??)

not explored well

[Masuda+ '12; TK+ '14]

2/19

Hints from NS 5n₀

 $\sim 2 M_{c}$

Observations: (NICER, GW170817, nuclear) [e.g., Miller+ '21]

4/19

Soft to stiff is challenging:

2, Phenomenological modeling:

3-window model & QHCI9 & 21

- Baym-Hatsuda-TK-Powell-Song-Takatsuka (2018): QHC18
- Baym-Furusawa-Hatsuda-TK-Togashi (2019): QHC19-Togashi
- · TK-Baym-Hatsuda (2021): QHC21-χ & QHC21-T

7/19

Stiff quark EoS ?: a guide

10/19 A nonperturbative quark model for $n_B > \sim 5n_0$ (~ 1 fm⁻³) A guide : Quark-Hadron Continuity : eff. Hamiltonian continuously evolves from hadron physics "3-window" [Manohar-Georgi 1983, Weinberg 2010,...] 0.2 GeV < Q < I-2 GeV ~2 GeV < O Q < ~0.2 GeV constituent quarks + OGE short range very long-range (> I fm) (quasi-particles) chiral SB & color-mag. int. pQCD confinement & **baryon-baryon**. int. A template) chiral color-mag. nB-nB int. solve within **MF** $\mathcal{H} = \mathcal{H}_{\text{NJL}} - \underline{H} \sum (q\Gamma_A q) (\bar{q}\Gamma_A \bar{q}) + \underline{g_V} (\bar{q}\gamma_0 q)^2$ + color- & charge- neutrality + β -equilibrium [Masuda+2015, TK+2014, Blaschke+....] (gv, H): both inspired from color-mag. interactions

$EOS \rightarrow microscopic$ insights

· M-R \rightarrow (g_V, H) ~ G_{vac} \rightarrow non-pert. effects important!

• QHC type models \rightarrow earlier stiffening (!) than in pure hadronic models

[Baym+ '19,TK '21]

Ist NS merger simulations with crossover EOS

Ist quantitative estimates on the impact of c_s² peak [Y. Huang+ (2021)]

· $f_2 peak \leftrightarrow \rightarrow compactness of NS$

• mass sym. mergers (1.25, 1.30, 1.35, 1.375 M_☉)

- Ist PT \rightarrow rapid growth in f₂
- \cdot QHC \rightarrow mild changes, even have reduction

 $\Delta f_2 = f_2 - f_2^{\text{nuclear only}}$

400

3, Sound velocity peaks

- TK (2021): "Stiffening of matter in quark-hadron continuity"
- TK-Suenaga (2021): "c_s² in two-color QCD"
- Fukushima-TK-Weise (2020): "percolation"

Strategy

Keep track of quark states from nuclear to quark matter

(within a single model, e.g., percolation model, Fukushima-TK-Weise '20)

Quarks in a baryon N_{c} (=3): number of colors

$$Q_{\rm in}(\boldsymbol{p},\boldsymbol{P}_B) = \mathcal{N}e^{-\frac{1}{\Lambda^2}\left(\boldsymbol{p}-\frac{\boldsymbol{P}_B}{N_{\rm c}}\right)^2} \xrightarrow{\boldsymbol{p}_3} \boldsymbol{p}_2 \xrightarrow{\boldsymbol{p}_4} \boldsymbol{p}_2 \xrightarrow{\boldsymbol{p}_4} \boldsymbol{p}_2 \xrightarrow{\boldsymbol{p}_4} \boldsymbol{p}_2$$

probability density:

mean:
$$\langle P_B \rangle = N_c \int_{p} p Q_{in}(p, P_B)$$

variance: $\left\langle \left(p - \frac{P_B}{N_c} \right)^2 \right\rangle \sim \Lambda^2$ energetic !

-

15/19

 \mathbf{Z}

A new unified model for QHC

16/19

"quark saturation" constraint

 \rightarrow relativistic baryons at low density, $n_B \sim 1-3n_0!$

cf) McLerran-Reddy model (2018) of quarkyonic matter

c_s² peak: from hadrons to quarks

& Ist evidence from lattice QCD

 \rightarrow see Itou's talk on 2-color dense QCD

(the next session on NS & EoS)

Summary

Peak in sound velocity

19/19

Outlook

Hadron physics for dense QCD

Trends found in this exercise (for quark matter part)

for quark EoS consistent with all constraints

• bottom line: $(g_V, H)_{@3.5-5n0} \sim (G_s)_{@vac}$

interactions remain non-perturbative (!)

Slow chiral restoration

at $5n_0$: $M_u \sim M_d \sim 50 \text{ MeV} >> \sim 5 \text{ MeV}$, $M_s \sim 300 \text{ MeV} >> \sim 100 \text{ MeV}$

• Pairing effects important

at $5n_0$: $\Delta_{CFL} \sim 200 \text{ MeV}$ (!)

• For allowed range of (g_v, H), $M_{max} \sim 2.4 M_{sun}$

 $g_{\rm v}/G$

e.g., ideal baryon gas

$$f_q(p; n_B) = \int_{P_B} \mathcal{B}(P_B; n_B) \left[Q_{in}(\boldsymbol{p}, 0) + O(P_B^2/N_c^2) \right]$$

$$= Q_{in}(\boldsymbol{p}, 0) \int_{P_B} \mathcal{B}(P_B; n_B) + \cdots$$

$$= n_B Q_{in}(\boldsymbol{p}, 0) + \cdots$$

$$\varepsilon = \int_{p} E_{q}(p) f_{q}(p; n_{B}) = \int_{p} E_{q}(p) \left[\underline{n_{B}} Q_{\text{in}}(p, 0) + \cdots \right]$$
$$= \underline{n_{B}} M_{B} + \cdots \rightarrow \text{non-relativistic}$$

Jump in pressure : schematic picture

 ϵ , n_B are continuous (f_q continuous)

Earlier stiffening in QHC vs later stiffening in hadronic EOS

Color-magnetic interaction play many roles

I) Coupling \propto velocity \sim p/E

become important in relativistic regime & high density

2) **Pairing**: strongly channel dependent

hadron mass ordering: N-Δ, etc. [DeRujula+ (1975), Isgur-Karl (1978), ...] color-super-conductivity [Alford, Wilczek, Rajagopal, Schafer,... 1998-]

3) **Baryon-Baryon int.** : short-range correlation

(Pauli + color-mag.) [Oka-Yazaki (1980),...]

channel dep. \rightarrow non-universal hard core (some are attractive!)

mass dep. \rightarrow stronger hard core in relativistic quarks

 \rightarrow consistent with the lattice QCD [HAL-collaboration]

Comparisons with other scenarios

quark energy; parameterization of MF

$$E_{\mathrm{CQM}}(\boldsymbol{k}) = \sqrt{M_q^2 + \boldsymbol{k}^2 - C_A + C_S [f_{\boldsymbol{q}}(\boldsymbol{k})]^{\beta}}$$

for $f_q(p) \ll I$ $\mathcal{V}_{\rm CE}[f_q] \simeq -C_E^{\mathcal{A}}$

color-*antisym*. channels dominate \rightarrow the quark feels *attractive* correlations

repulsive attractive

for saturated levels

color-sym. channels also enter

 \rightarrow the quark feels *repulsive* correlations

adjust C_E^A (fit M_B = 939 MeV)

high density stiffening

peak in c_s

Example) 2-color NJL model

[TK-Suenaga '21]

baryons = diquarks

- diquark mass = $m_{\pi} << M_{q}$
- BEC-BCS crossover (diquark condensate)

$$\mathcal{L}_4 = G\left[\left(\bar{q}\tau_a q \right)^2 + \left(\bar{q}i\gamma_5\tau_a q \right)^2 \right] + H\left[\left| \bar{q}i\gamma_5\tau_2\sigma_2q_C \right|^2 + \left| \bar{q}\tau_2\sigma_2q_C \right|^2 \right]$$

Example) 2-color NJL model

[TK-Suenaga '21]

BEC \rightarrow BCS & $C_s^2 \uparrow$ occur at 0.5-In₀ (early stiffening)

Inversion problem: motivations to study **B**

perhaps convenient to use the baryonic bases for low E physics

$$P(\mu_B)|_{\beta-eq} \longrightarrow P(\mu_B, \mu_Q, T, ...)$$

extensions of the quark-hadron continuity

relations to the McLerran-Reddy (MR) model

important parameter

$$\Delta = \frac{\Lambda^3}{k_{\rm FB}^2} + \kappa \frac{\Lambda}{N_c^2}$$

why this form?

- phenomenological [McLerran-Reddy, PRL '19]
- derivation in excluded vol. model [Jeong-McLerran-Sen, '19]

A trial: shell form

$$\mathcal{B}^{\rm sh}(P_B; P_{\rm sh}) = \underline{h}\theta(P_{\rm sh} - P_B)\theta(P_B - P_{\rm sh} - \underline{\Delta})$$

Constraints from f_a (for $P_{sh} \sim N_c \Lambda$) $f_q^{\rm sh}(p) \sim h\Delta N_{\rm c}^2 \,\mathrm{e}^{-(\tilde{p}-\tilde{P}_{\rm sh})^2}$ constraint: $f_a^{sh} < I \implies h \varDelta < \Lambda/N_c^2$ a possible scaling form: $[h\Delta](P_{\rm sh}) \sim c_0 \Lambda \left(\frac{\Lambda^2}{P_{\rm sh}^2} + \frac{c_1}{N_c}\frac{\Lambda}{P_{\rm sh}} + \frac{c_2}{N_c^2}\right)$ $A \sim \Lambda / N_c^2$ P_B MR-model (thin shell model) h = 1 & $\Delta = \frac{\Lambda^3}{k_{\text{FB}}^2} + \kappa \frac{\Lambda}{N_c^2}$ (c₁ = 0) $k_{FR} \sim N_c \Lambda_{QCD}$

Quantum numbers ?

quark quantum numbers; N_c , N_f , 2-spins (for a given spatial w.f.)

how many baryon species are needed to saturate quark states?

$$\rightarrow$$
 we need only **2N_f = 6** species for N_f = 3

(full members of singlet, octet, decuplet are **NOT** necessary)

convenient color-flavor-spin bases

[neglect N- \varDelta splitting etc. for simplicity] $\Delta_{s_z=\pm 3/2}^{++} = [u_R \uparrow u_G \uparrow u_B \uparrow], \quad [u_R \downarrow u_G \downarrow u_B \downarrow],$ $\Delta_{s_z=\pm 3/2}^{-} = [d_R \uparrow d_G \uparrow d_B \uparrow], \quad [d_R \downarrow d_G \downarrow d_B \downarrow],$ $\Omega_{s_z=\pm 3/2}^{-} = [s_R \uparrow s_G \uparrow s_B \uparrow], \quad [s_R \downarrow s_G \downarrow s_B \downarrow],$

Merger & HMNS: $f_{GW} \rightarrow R_{NS}$

MNS

Caveat I: $c_s^2 > 1/3$ generic ?

Depends on EoS at I-2n₀

Remark) pQCD + pairing vs speed of sound

[see also McLerran-Reddy (2018)]