UAB

Universitat Autònoma de Barcelona

$\eta, \eta^{\prime} \rightarrow \pi^{0} \gamma \gamma$ and $\eta^{\prime} \rightarrow \eta \gamma \gamma$ decays
and a leptophobic U(1) B boson

Rafel Escribano
 UAB and IFAE-BIST

QNP2022

The 9th International (online) Conference on Quarks and Nuclear Physics

September 9, 2022
Tallahassee (Florida)

What's the motivation for this analysis? Theoretical analysis of the doubly radiative decays

$$
\eta, \eta^{\prime} \rightarrow \pi^{0} \gamma \gamma \text { and } \eta^{\prime} \rightarrow \eta \gamma \gamma
$$

Decay	Couplings	Chiral loop	L $\sigma \mathrm{M}$	VMD	Γ	$\mathrm{BR}_{\text {th }}$	$\mathrm{BR}_{\text {exp }}[14]$
$\eta \rightarrow \pi^{0} \gamma \gamma(\mathrm{eV})$	Empirical	1.87×10^{-3}	5.0×10^{-4}	$0.16(1)$	$0.18(1)$	$1.35(8) \times 10^{-4}$	$2.56(22) \times 10^{-4}$
	Model-based	1.87×10^{-3}	5.0×10^{-4}	$0.16(1)$	$0.17(1)$	$1.30(1) \times 10^{-4}$	
$\eta^{\prime} \rightarrow \pi^{0} \gamma \gamma(\mathrm{keV})$	Empirical	1.1×10^{-4}	1.3×10^{-4}	$0.57(3)$	$0.57(3)$	$2.91(21) \times 10^{-3}$	$3.20(7)(23) \times 10^{-3}$
	Model-based	1.1×10^{-4}	1.3×10^{-4}	$0.70(4)$	$0.70(4)$	$3.57(25) \times 10^{-3}$	
$\eta^{\prime} \rightarrow \eta \gamma \gamma(\mathrm{eV})$	Empirical	1.4×10^{-2}	3.29	$21.2(1.2)$	$23.0(1.2)$	$1.17(8) \times 10^{-4}$	
	Model-based	1.4×10^{-2}	3.29	$19.1(1.0)$	$20.9(1.0)$	$1.07(7) \times 10^{-4}$	$8.25(3.41)(0.72) \times 10^{-5}$

R. Escribano, S. Gonzàlez-Solís, R. Jora and E. Royo, Phys. Rev. D 102 (2020) 034026

What's a leptophobic U(1) B boson?

It is a new gauge boson coupled to the baryon number

$$
\mathcal{L}=\frac{1}{3} g_{B} \bar{q} \gamma^{\mu} q B_{\mu} \quad \alpha_{B} \equiv g_{B}^{2} /(4 \pi)
$$

The low-energy symmetries of QCD are preserved
C and P are conserved
B does not transform under SU(3) flavour symmetry
B is a singlet under isospin

$$
I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)
$$

B is $\boldsymbol{\omega}$ meson like!

What's a leptophobic $\mathbf{U (1)} B$ boson?

B is not completely decoupled from leptons

$$
\mathcal{L}_{\text {int }}=\left(\frac{1}{3} g_{B}+\varepsilon Q_{q} e\right) \bar{q} \gamma^{\mu} q B_{\mu}-\varepsilon e \bar{e} \gamma^{\mu} \ell B_{\mu}
$$

with a "natural"-sized $\varepsilon=e g_{B} /(4 \pi)^{2}$ induced radiatively

What's the motivation for a U(1) B boson?

- The baryon number symmetry may be related to dark matter (it is stabilised since it carries a conserved baryon number charge)
- Natural framework for the Peccei-Quinn solution to the strong CP problem

How are hadronic processes calculated?

Using the hidden local symmetry (HLS) for VMD

$$
\mathscr{L}_{V V P}=\frac{G}{\sqrt{2}} \varepsilon^{\mu v \alpha \beta} \operatorname{tr}\left[\partial_{\mu} V_{V} \partial_{\alpha} V_{\beta} P\right] \text { with } G=\frac{3 g^{2}}{4 \pi^{2} f_{\pi}}
$$

P is the pseudoscalar meson nonet
\mathbf{V} is the vector meson nonet
(gauge bosons of a hidden U(3)v symmetry)
In conventional VMD:

$$
\begin{gathered}
\mathscr{L}_{V \gamma}=-4 e g f_{\pi}^{2} A^{\mu} \operatorname{tr}\left[Q V_{\mu}\right] \\
\mathscr{L}_{V B}=-4 \frac{1}{3} g_{B} g f_{\pi}^{2} B^{\mu} \operatorname{tr}\left[V^{\mu}\right]
\end{gathered}
$$

How are hadronic processes calculated?

S. Tulin, Phys. Rev. D 89 (2014) 114008

Previous estimates

Assuming the Narrow Width Approximation (NWA):
$\mathrm{BR}\left(\eta \rightarrow \pi^{0} \gamma \gamma\right)=\mathrm{BR}(\eta \rightarrow B \gamma) \times \mathrm{BR}\left(B \rightarrow \pi^{0} \gamma\right)$
and

$$
\mathrm{BR}\left(B \rightarrow \pi^{0} \gamma\right)=1
$$

and QCD contribution off
and

S. Tulin, Phys. Rev. D 89 (2014) 114008

Present estimates from this analysis

Assuming the NWA

and QCD contribution off 0.010

and $\quad \mathrm{BR}\left(\eta \rightarrow \pi^{0} \gamma \gamma\right)<\mathrm{BR}_{\exp }$ at $2 \sigma{ }^{10^{-5}}{ }_{10_{0.0}^{-6}}^{10^{-4}}$
and including the
 latest experimental BRs
R. Escribano, S. Gonzàlez-Solís and E. Royo, arXiv: 2207.14263 [hep-ph]

However, a lot more can be done nowadays!

Using the new BR value and spectrum from KLOE for

$$
\eta \rightarrow \pi^{0} \gamma \gamma \quad \begin{aligned}
& \text { B. Cao [KLOE-2], PoS EPS-HEP2021 (2022) } 409 \\
& \text { E. Pérez del Rio, CD21 }
\end{aligned}
$$

Using the recent BR value and spectrum from BESIII for $\eta^{\prime} \rightarrow \pi^{0} \gamma \gamma \quad$ м. Ablikim et. al. [BESIII], Phys. Rev. D 96 (2017) 012005

Using the recent BR value from BESIII for
$\eta^{\prime} \rightarrow \eta \gamma \gamma$ M. Ablikim et. al. [BESIII], Phys. Rev. D 100 (2019) 052015

How are these processes calculated?

VMD: $\quad \mathscr{A}_{\eta \rightarrow \pi^{0} \gamma \gamma}^{\mathrm{VMD}}=\sum_{V=\rho^{0}, \omega, \phi} g_{V \eta \gamma} g_{V \pi^{0} \gamma}\left[\frac{\left(P \cdot q_{2}-m_{\eta}^{2}\right)\{a\}-\{b\}}{D_{V}(t)}+\left\{\begin{array}{c}q_{2} \leftrightarrow q_{1} \\ t \leftrightarrow u\end{array}\right\}\right]$

LoM: $\quad \mathscr{A}_{\eta \rightarrow \pi^{0} \gamma \gamma}^{\mathrm{L} \sigma \mathrm{M}}=\frac{2 \alpha_{e m}}{\pi} \frac{1}{m_{K^{+}}^{2}} L\left(s_{K}\right)\{a\} \times \mathscr{A}_{K^{+} K^{-} \rightarrow \pi^{0} \eta}^{\mathrm{L} \sigma \mathrm{M}}$
B boson: $\quad \mathscr{A}_{\eta \rightarrow \pi^{0} \gamma \gamma}^{B \text { boson }}=g_{B \eta \gamma}(t) g_{B \pi^{0} \gamma}(t)\left[\frac{\left(P \cdot q_{2}-m_{\eta}^{2}\right)\{a\}-\{b\}}{D_{B}(t)}+\left\{\begin{array}{c}q_{2} \leftrightarrow q_{1} \\ t \leftrightarrow u\end{array}\right\}\right]$

$$
\begin{gathered}
g_{B \pi^{0} \gamma}(t)=\frac{e g_{B}}{4 \pi^{2} f_{\pi}} F_{\omega}(t) \quad F_{V}(s)=\frac{m_{V}^{2}}{m_{V}^{2}-s-i m_{V} \Gamma_{V}} \\
g_{B \eta \gamma}(t)=\frac{e g_{B}}{12 \pi^{2} f_{\pi}}\left[\cos \varphi_{P} F_{\omega}(t)+\sqrt{2} \sin \varphi_{P} F_{\phi}(t)\right] \\
D_{B}(t)=m_{B}^{2}-t-i \sqrt{t} \Gamma_{B}(t)
\end{gathered}
$$

How are these processes calculated?

B boson width:

$$
\begin{aligned}
\Gamma_{B}(t) & =\frac{\tilde{\gamma}_{B \rightarrow e^{+} e^{-}}(t)}{\tilde{\gamma}_{B \rightarrow e^{+} e^{-}}\left(m_{B}^{2}\right)} \Gamma_{B \rightarrow e^{+} e^{-}} \theta\left(t-4 m_{e}^{2}\right)+\frac{\tilde{\gamma}_{B \rightarrow \pi^{0} \gamma}(t)}{\tilde{\gamma}_{B \rightarrow \pi^{0} \gamma}\left(m_{B}^{2}\right)} \Gamma_{B \rightarrow \pi^{0} \gamma} \theta\left(t-m_{\pi^{0}}^{2}\right)+\frac{\tilde{\gamma}_{B \rightarrow \mu^{+} \mu^{-}}(t)}{\tilde{\gamma}_{B \rightarrow \mu^{+} \mu^{-}}\left(m_{B}^{2}\right)} \Gamma_{B \rightarrow \mu^{+} \mu^{-}} \theta\left(t-4 m_{\mu}^{2}\right) \\
& +\frac{\tilde{\gamma}_{B \rightarrow \pi^{+} \pi^{-}}(t)}{\tilde{\gamma}_{B \rightarrow \pi^{+} \pi^{-}}\left(m_{B}^{2}\right)} \Gamma_{B \rightarrow \pi^{+} \pi^{-}} \theta\left(t-4 m_{\pi}^{2}\right)+\frac{\tilde{\gamma}_{B \rightarrow \pi^{+} \pi^{-} \pi^{0}}(t)}{\tilde{\gamma}_{B \rightarrow \pi^{+} \pi^{-} \pi^{0}}\left(m_{B}^{2}\right)} \Gamma_{B \rightarrow \pi^{+} \pi^{-} \pi^{0}} \theta\left(t-9 m_{\pi}^{2}\right),
\end{aligned}
$$

New exclusion plots

Not assuming the NWA and QCD contribution on

$\begin{array}{ll}\mathrm{BR}(\mathrm{PDG})=(2.56 \pm 0.22) \times 10^{-4} & \text { P. A. Zyla et. Al. [PDG], PTEP } 2020 \text { (2020) } 093 \mathrm{CO1} \\ \mathrm{BR}(\mathrm{KLOE})=(1.23 \pm 0.14) \times 10^{-4} & \text { B. Cao [KLOE-2], PoS EPS-HEP2021 (2022) } 409\end{array}$
R. Escribano, S. Gonzàlez-Solís and E. Royo, arXiv: 2207.14263 [hep-ph]

New exclusion plots

$$
\eta^{\prime} \rightarrow \pi^{0} \gamma \gamma
$$

$\mathrm{BR}(\mathrm{BESIII})=(3.20 \pm 0.07 \pm 0.23) \times 10^{-3}$
M. Ablikim et. al. [BESIII], Phys. Rev. D 96 (2017) 012005

$$
\eta^{\prime} \rightarrow \eta \gamma \gamma
$$

$\operatorname{BR}(\mathrm{BESIII})=(8.25 \pm 3.41 \pm 0.72) \times 10^{-3}$
M. Ablikim et. al. [BESIII], Phys. Rev. D 100 (2019) 052015
R. Escribano, S. Gonzàlez-Solís and E. Royo, arXiv: 2207.14263 [hep-ph]

Are peaks in the $\pi^{0} \gamma$ mass distribution see

Fits to the $\gamma\rangle$ mass distribution

Crystal Ball: $\quad \alpha_{B}=0.40_{-0.08}^{+0.07}, \quad m_{B}=583_{-20}^{+32} \mathrm{MeV} \quad \chi_{\text {min }}^{2} /$ dof $=0.4 / 5=0.1$ KLOE: $\quad \alpha_{B}=0.049_{-27}^{+40}, \quad m_{B}=135_{-135}^{+1} \mathrm{MeV} \quad \chi_{\text {min }}^{2} / \mathrm{dof}=4.5 / 5=0.9$

Fits to the $\gamma\rangle$ mass distribution

BESIII: $\alpha_{B}=0.005(1), \quad m_{B}=759(1) \mathrm{MeV} \quad \alpha_{B}=0.018(5), \quad m_{B}=156_{-1}^{+5} \mathrm{MeV}$

$$
\chi_{\min }^{2} / \mathrm{dof}=11.7 / 11=1.1 \quad \chi_{\text {min }}^{2} / \mathrm{dof}=12.5 / 11=1.1
$$

Fits to the $\gamma\rangle$ mass distribution

Joint Fit

$$
\alpha_{B}=0.005(1), \quad m_{B}=759(1) \mathrm{MeV}
$$

$$
\chi_{\min }^{2} / \operatorname{dof}=19.6 / 18=1.1
$$

$$
\alpha_{B}=5(2) \times 10^{-4}, \quad m_{B}=780_{-4}^{+3} \mathrm{MeV}
$$

$$
\chi_{\min }^{2} / \mathrm{dof}=23.7 / 18=1.3
$$

BESIII data dominates the fit

Conclusions

- The sensitivity of the rare decays $\eta, \eta^{\prime} \rightarrow \pi^{0} \gamma \gamma$ and $\eta^{\prime} \rightarrow \eta \gamma \gamma$ to a leptophobic $\mathbf{U}(1) \mathbf{B}$ boson in the mass range $\mathrm{MeV}-\mathrm{GeV}$ has been analysed in detail
- Stringent limits on the B boson parameters m_{B} and a_{B} have been found
- The current constraints have been strengthened by one order of magnitude from $\eta \rightarrow \pi^{0} \gamma \gamma$
- These constraints would make a B-boson signature strongly suppressed

Conclusions

Backup slides

Backup slides

Backup slides

