9th International Conference on Quarks and Nuclear Physics

SPHENIX

Experiment Overview

7 September 2022 Dennis V. Perepelitsa University of Colorado Boulder

University of Colorado Boulder

@profdvp

Measurements at RHIC & the LHC have shown: Quark-Gluon Plasma (QGP) behaves as an almost perfect fluid

- expansion governed by relativistic hydrodynamics
- → lowest specific viscosity (η /s) of any known material!

larger pressure gradients in this direction

nearly frictionless expansion

Spatial anisotropies at time of QGP creation...

...momentum-space anisotropy in the final state

strongly-coupled,

long-distance behavior

How does the behavior of Quark-Gluon Plasma emerge from the microscopic QCD theory?

sPHENIX science

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC: (1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales. The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) Map the phase diagram of QCD with experiments planned at RHIC.

2015 US NP LRP

sPHENIX recognized by the U.S. Nuclear Physics community as an *essential* tool for QGP microscopy

new, unique capabilities not used before at RHIC!

sPHENIX run plan (2023-2025)

Year-1 →

Commissioning the detector

First Au+Au collisions for physics!

Year-2 →●●←

Transversely polarized p+p and p+Au collisions:

vacuum baseline & reference for Au+Au physics

spin & "cold QCD" physics in their own right

from the sPHENIX Beam Use Proposal 2022

Table 1: Summary of the sPHENIX Beam Use Proposal for years 2023–2025, as requested in the charge. The values correspond to 24 cryo-week scenarios, while those in parentheses correspond to 28 cryo-week scenarios. The 10%-*str* values correspond to the modest streaming readout upgrade of the tracking detectors. Full details are provided in Chapter 2.

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	z < 10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]	
2024	p^{\uparrow} +Au	200	_	5	0.003 pb ⁻¹ [5 kHz]	$0.11 \ {\rm pb}^{-1}$
					$0.01 \text{ pb}^{-1} [10\%-str]$	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

"Archival" high-luminosity Au+Au run

>140 **billion** fully min-bias Au+Au events^(*) recorded to disk

(*) - |z| < 10cm, 28-cryoweek scenarios

sPHENIX detector

BaBar Magnet

		First run year	2023
Calo.		$\sqrt{s_{NN}}$ [GeV]	200
Outer HCal	Tracking	Trigger Rate [kHz]	15
Inner HCal		Magnetic Field [T]	1.4
EMCal ()	— TPC	First active point [cm]	2.5
	— INTT	Outer radius [cm]	270
	— MVTX	$ \eta $	≤1.1
		<i>z_{vtx}</i> [cm]	10
	-	N(AuAu) collisions*	1.43x10 ¹¹
00000		* In 3 years of runr	ning

Key sPHENIX advantages for jet & HF probes at RHIC:

(1) large, hermetic acceptance, (2) huge data rate, (3) hadronic calorimeter, (4) precision tracking, (5) unbiased triggering in p+p

University of Colorado Boulder

MAPS Vertex Detector (MVTX)

Completed halfsector at LBNL

3 Layers of Monolithic Active Pixels (MAPs), small material budget

- → Distance of Closest Approach (DCA) resolved at < 10 μ m for p_T > 2 GeV
- Essential to heavy flavor program

Half-sectors at BNL

Intermediate Silicon Strip Tracker (INTT)

- 4 Layer (2-hit) Silicon Strip Detector
 - Timing resolution ~100ns
 - Resolves single RHIC bunch crossing & connects closer/further trackers

TPC under assembly at Stony Brook

> Time Projection Chamber (TPC)

Compact design, active region 30 < r < 78 cm

- Gateless, employs GEMs to minimize ion backflow, continuous streaming readout
- Provides lever arm for momentum resolution

TPC Outer Tracker (TPOT)

TPOT panels at Stony Brook

Micromegas-based detector with 8 sectors

- Situated between TPC and EMCal
- Correct for beam-induced space charge distortions of the TPC

sPHENIX Calorimetry

sPHENIX Calorimetry

10/32 sectors installed

Electromagnetic Calorimeter (EMCal)

Tungsten & scintillating fiber, 2-D projective design

- → 0.025x0.025 towers, ~20 X₀, $|\eta| < 1.1$, 2π azimuthal acceptance
- → $16\%/\sqrt{E}$ resolution for photons (γ , jets), electrons (Υ spectroscopy)

sPHENIX Calorimetry

IHCal installation into OHCal+magnet

Inner & Outer Hadronic Calorimeter (HCal)

Aluminum (IHCal) or Steel (OHCal) interleaved w/ scintillating tiles

- \Rightarrow ~5 λ₀ total, IHCal catches start of hadronic showers before magnet
- ➡ 0.1x0.1 segmentation & excellent energy resolution for jet measurements

GEANT4 simulation of Au+Au event in sPHENIX

Jet, HF, Quarkonia measurements happening in a large, fluctuating background with huge dynamic variations event by event!

sPHENIX Collaboration

More than **360** members from **82** institutions in **14** countries as of 2022

- steady growth since collaboration formation with 40 institutions
- world-class expertise in physics, silicon, TPCs, calorimeter, electronics, computing, ...

sPHENIX is a dedicated jet detector for detailed studies of the parton shower - QGP interaction

- Capabilities enable a rich physics program with many channels!
- \rightarrow One example above: jet suppression at large cone size R

Upsilon spectroscopy

Sequential Upsilon dissociation: systematic probe of QGP temperature profile

- Precise tracking system designed to separate 1S, 2S, and 3S states
- Unique opportunity to observe Y(3S) at RHIC!

Heavy flavor physics

Heavy flavor hadron & jet program enabled by vertex detector & streaming readout

- ➡ In-medium modification of D/B hadrons, and HF-tagged jets
- One example above: explore hadronization in nuclear medium

Cold QCD study proton spin, transverse-momentum, and cold nuclear effects program

Collective behavior in small systems - a revolutionary discovery in heavy ion physics

sPHENIX will have new tools to investigate these phenomena - e.g. heavy flavor "flow" at RHIC energies

Also a dedicated "Cold QCD" physics program taking advantage of transversely polarized *p* beams

measurements looking towards Electron-Ion Collider at BNL!

Conclusion

- sPHENIX is a dedicated jet & heavy flavor physics detector for QGP microscopy, with new, purpose-built capabilities never deployed at RHIC
 - Complementary to LHC Run 3 program, while also breaking new ground in regions unique to sPHENIX
 - Major priority for U.S. Nuclear Physics community finish the scientific mission of RHIC!
- Looking forward to commissioning & first data-taking next year in 2023!

SPHENIX