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• Hadrons constitute the major part of  the visible universe.

• Beyond spectroscopy, today’s experiments have a new level 
of scope, precision and accuracy on the still unexplored 
territory of Hadron structures 
(evidence for multiquark and exotic configurations.)

• Exploring QCD phase diagram at high baryonic number
and moderate temperatures

• Experiments with pion beam also allow for cold matter 
effects.
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Fig. 1. Left: The conjectured phases of strongly interacting matter and their boundaries and a Critical Point [3, 4, 5, 6] in a diagram of
temperature versus baryochemical potential. Lattice QCD results from [10, 11]. Shaded are indicate the region of µB /T ≤ 2 where the
location of a Critical Point is disfavored. The expectation value of the chiral condensate relative to the vacuum is depicted as orange
gradient. Right: The black symbols are the chemical freeze-out points describing the final state hadron abundances in a statistical
hadronization model [12, 13, 14, 15, 16]. The lila triangle is the point measured from the intermediate invariant-mass slope of dimuons
by the NA60 collaboration [17].

2. The awaited facilities

The important prerequisite for success is the combination of high intensity beams and multi-purpose
detectors with large acceptance, high efficiency, dead time free (free streaming read-out electronics with
high bandwidth online event selection). Table 1 summarises the existing and planned high µB facilities
around the world. The new accelerator facilities are designed to have ever increasing luminosities. To cope
with high beam intensities, substantial progress in detector technologies has been made (mainly driven by the
ALICE upgrade, CBM and sPHENIX). The rate capabilities of existing and planned heavy-ion experiments
are presented in Fig. 2. The interaction rate shown is tied either by the detector capabilities or luminosity.
E.g. at beam energies above

√
sNN = 20 GeV, the reaction rates of STAR are limited to about 2 kHz by the

TPC read-out, and drop down to a few Hz at beam energies below
√

sNN = 7GeV due to the decreasing
luminosity provided by the beams crossing increasing emittance.

Facility SIS18 HIAF Nuclotron J-PARC-HI SIS100 NICA RHIC SPS SPS
Experiment HADES CEE BM@N DHS, D2S CBM MPD STAR NA61 NA60+

/ mCBM / HADES
Start 2012/2018 2023 2019 (Au) > 2025 2025 2021 2010, 2019 2009, 2022 > 2025√

sNN , GeV 2.4 − 2.6 1.8 − 2.7 2 − 3.5 2 − 6.2 2.7 − 5 2.7 − 11 3 − 19.6 4.9 − 17.3 4.9 − 17.3
µB, GeV 880 − 670 880 − 750 850 − 670 850 − 490 780 − 400 750 − 330 720 − 210 560 − 230 560 − 230

Hadrons + + + + + + + + (+)
Dileptons + (+) + + + + +
Charm (+) (+) + + + +

Table 1. Running and planned high µB facilities. The facility and experiment, the anticipated year for data tacking, the range in µB and√
sNN as well as capabilities of measuring hadrons, dileptons and charm are listed.

2.1. CBM and HADES at GSI / FAIR
The Facility for Antiproton and Ion Research (FAIR) accelerator complex (Darmstadt, Germany) is

designed to deliver high-intensity primary beams from protons to uranium to different production targets
and subsequently cool and store selected secondary particles, including exotic nuclei far off stability and
anti-protons, at highest brilliance. Since SIS18 will be the driver for the important experimental program
during FAIR Phase-0 further technical improvements, machine developments and maintenance measures
are continuously conducted. The excavation for the SIS100 tunnel is rapidly advancing [18] and substantial
progress has been made in serial production of major components for SIS100 (e.g. dipoles [19]). The SIS100
commissioning is anticipated to 2024. To recall, the originally proposed FAIR project comprised two main
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The Accelerator Facility
FAIR will be one of the largest and most complex accelerator facilities in the world. The FAIR
accelerator facility will have the unique ability to provide particle beams of all the chemical elements (or
their ions), as well as antiprotons. The particles will be accelerated to almost the speed of light in the
FAIR accelerator facility and made available for scientific experiments. FAIR will generate particle
beams of a previously unparalleled intensity and quality. At the heart of the facility is an underground
ring accelerator with a circumference of 1,100 meters. There are also additional experimental rings and
experimental stations with several kilometers of beam lines in total. The existing accelerator facility of
the GSI Helmholtzzentrum für Schwerionenforschung will serve as the injector for the new FAIR facility.

 

Ring Accelerator SIS100
The SIS100 ring accelerator runs along an underground tunnel whose floor lies as deep as 17 meters
under the earth’s surface. The SIS100 has a circumference of 1,100 meters and can accelerate the ions
of all the natural elements in the periodic table to speeds as high as 99% of the speed of light. The
magnets that keep the ions in their paths are superconducting and are cooled to -269°C by means of
liquid helium. The accelerated particles are either used directly for experiments or for the production of
other particles, so-called secondary particles.

Secondary particles
A key aspect of the FAIR facility is that exotic particles can be produced in a targeted manner. When the
accelerated ions impact a material sample, antiprotons or special isotopes, for example, are produced
at two so-called production targets. The isotopes are then specifically filtered out with the super
fragment separator (Super-FRS), a huge sorting machine over a hundred meters long, and used for
further experiments.

Storage rings
Connected to the SIS100 ring accelerator and the Super-FRS is a complex system of storage rings and
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Introduction: Spacelike and Timelike reactions

Figure: B. Ramstein, AIP Conf. Proc. 1735, 080001 (2016) [HADES]

q2 ≤ 0: CLAS/Jefferson Lab, MAMI,

ELSA, JLab-Hall A, MIT-BATES

ep→ e′N(· · ·); γ∗N → N∗

q2 > 0: HADES,

...., PANDA

π−p→ e+e−n; N∗ → γ∗N → e+e−N

N∗ = ∆(1232)32
+
, N(1440)12

+
, N(1520)32

−
, N(1535)12

−
, .... N(1710)12

+
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Two methods of obtaining information on structure of baryons

Why use of  pion beam  :
Separation of in-medium propagation and mechanism, because pions are absorbed  at the surface 
of the nucleus whereas in photon and proton absorption occurs throughout the whole nuclear 
volume.



Spacelike form factors:
• Structure information: shape,

qqq excitation vs. hybrid, ...

Transition Electromagnetic form factors

Baryon resonances
transition form factors

Timelike form factors:
• Particle production channels

CLAS: Aznauryan et al.,
Phys. Rev. C 80 (2009)

MAID: Drechsel, Kamalov,
Tiator, EPJ A 34 (2009)

This talk:
Connect Timelike and SpacelikeTransition Form Factors (TFF)
Obtain Baryon-photon coupling evolution with 4 momentum transfer

See Gernot Eichmann and Gilberto 
Ramalho
Phys. Rev. D 98, 093007 (2018)

q2<0 q2>0



Baryon resonances S=0    PDG
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Table 2.1: Two- to four-star baryon resonances below 2 GeV and up to JP = 5
2

± from the PDG [9], labeled by their quantum numbers
isospin I, strangeness S, spin J and parity P . The four-star resonances are shown in bold font and the two-star resonances in gray.
Historically the N and � resonances are labelled by the incoming partial wave L2I,2J in elastic ⇡N scattering, with L = P, P, F, S,D,D

for JP = 1
2

+
. . . 5

2

� from left to right.

dipole transition GM (Q2
), which is dominated by the spin flip of a quark in the nucleon to produce the �, and

the electric and Coulomb quadrupole ratios REM and RSM . The prediction of the �N ! � transition magnetic
moment was among the first successes of the constituent-quark model, which relates it to the magnetic moment
of the proton via µ(�p ! �) = 2

p
2µp/3 [15]. However, the quark-model prediction also underestimates the

experimental value by about 30% and entails REM (Q2
) = RSM (Q2

) = 0 [16, 17]. Dynamical models assign
most of the strength in the quadrupole transitions to the meson cloud that ‘dresses’ the bare �. We will return
to this issue in Sec. 4.7 and also present a different viewpoint on the matter.

Roper resonance. The lowest nucleon-like state is the Roper resonance N(1440) or P11 with JP
= 1/2+,

which has traditionally been a puzzle for quark models. The Roper is unusually broad and not well described
within the non-relativistic constituent-quark model (see [18] and references therein), which predicts the wrong
mass ordering between the Roper and the nucleon’s parity partner N(1535) and the wrong sign of the �p !

N(1440) transition amplitude. Although some of these deficiencies were later remedied by relativistic quark
models [18–22], they have led to longstanding speculations about the true nature of this state being the first
radial excitation of the nucleon or perhaps something more exotic.

The Jefferson Lab/CLAS measurements of single and double-pion electroproduction allowed for the de-
termination of the electroexcitation amplitudes of the Roper resonance in a wide range of Q2. The helicity
amplitudes obtained from the Jefferson Lab and MAID analyses are shown in Fig. 2.1. They exhibit a strong Q2

dependence of the transverse helicity amplitude A1/2 including a zero crossing, which also translates into a zero
of the corresponding Pauli form factor F2(Q2

). Such a behavior is typically expected for radial excitations and
it has been recovered by a number of approaches, from constituent [23] and light-front constituent-quark mod-
els [24] to Dyson-Schwinger calculations [25], effective field theory [26], lattice QCD [27] and AdS/QCD [28].
Although none of them has yet achieved pointwise agreement with the data they all predict the correct signs
and orders of magnitude of the amplitude. Taken together, consensus in favor of the Roper resonance as pre-
dominantly the first radial excitation of the three-quark ground state is accumulating and we will return to this
point in Sec. 3.6.
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Figure 2.1: Representation of the transverse �p Ñ ⇡`n cross section with Q2 “ 1 GeV2. Notice the bumps
associated to the first, second and third resonance region. Calculation using the MAID 2007 parametrization [?,
?]. The vertical lines indicate some of the more relevant nucleon resonances (N˚).

3.1 Notation and conventions

Throughout this paper we use natural units, ~ “ c “ 1, with masses, 3-momenta and energies given in GeV,
1fm » 1{0.197327 GeV´1.

We also follow the covariant dimensional representation of 4-vectors aµ aµ “ pa0,aq, where a0 is the time
component and a is the space component. We adopt the convention for the metric tensor

gµ⌫ “ diagp1,´1,´1,´1q “

¨

˚̊
˝

1 0 0 0
0 ´1 0 0
0 0 ´1 0
0 0 0 ´1

˛

‹‹‚, (3.1)

and write the Dirac matrices �µ in the Dirac-Pauli representation [?, ?]

�0 “
ˆ

11 0
0 ´11

˙
, �i “

ˆ
0 �i

´�i 0

˙
, �5 “ i�0�1�2�3 “

ˆ
0 11
11 0

˙
, (3.2)

where 11 is the 2 ˆ 2 unitary matrix, and �i are the Pauli matrices

�1 “
ˆ

0 1
1 0

˙
, �2 “

ˆ
0 ´i
i 0

˙
, �3 “

ˆ
1 0
0 ´1

˙
. (3.3)

The commutation relation

t�µ, �⌫u “ 2gµ⌫ (3.4)

holds, and the �5 matrix is given by �5 “ i
24!"↵��⇢�

↵�����⇢, where "0123 “ 1. Also,

�µ⌫ “ i

2
p�µ�⌫ ´ �⌫�µq. (3.5)

Spin 1
2 and 3

2 states are described by Dirac (u) and Rarita-Schwinger (u↵) spinors, respectively, with the
normalizations [?, ?]

ūpp, squpp, sq “ 1, ū↵pp, squ↵pp, sq “ ´1, (3.6)
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Memories of Murray and the Quark Model
George Zweig, Int.J.Mod.Phys.A25:3863-3877,2010

“Murray looked at two pieces of paper, looked at me and said 
‘In our field it is costumary to put theory and experiment 
on the same piece of paper’.
I was mortified but the lesson was valuable”

Zweig quark or the constituent quark

Our approach is phenomenological 



�E.M. matrix element can be written in terms of 
an effective baryon composed by an off-mass-shell quark, and an on-mass-
shell quark pair (diquark) with an average mass.

�Baryon wavefunction reduced to an effective quark-diquark structure.

E.M. matrix element 



§ Nucleon “wavefunction” (S wave)  

(symmetry based  only;  not dynamical based)

�A quark + scalar-diquark component

�A quark+ axial vector-diquark component 

§ Delta (1232)  “wavefunction” (S wave) 

� Only quark + axial vector-diquark term contributes

Phenomenological function

ü The Diquark is not pointlike.



Quark E.M. Current

4

FIG. 4: Electromagnetic current to the quark. The first term
is the coupling of the photon to a bare quark. The loops cor-
respond to quark-antiquark excitations and the black dot ver-
tices to the quark-antiquark interaction kernel. The diagram
gives a representation of the inhomogeneous Bethe Salpeter
equation (2.5) for the quark-photon vertex.

where M is the nucleon mass, j1 and j2 are the Dirac
and Pauli quark form factors. Each of these form fac-
tors ji (i = 1, 2) has an isoscalar and an isovector com-
ponent, respectively fi+ and fi� (functions of Q2, the
4-momentum transfer squared), ji =

1
6fi+ + 1

2fi�⌧3.
The inclusion of the second term in the second equation

in (2.3) is equivalent to using the Landau prescription for
the electromagnetic current Jµ

NR. Since the phenomeno-
logical wave functions of the baryons include the propa-
gators of the quark interacting with the photon in Fig.
3, that term guarantees current conservation.

The explicit forms of the Dirac and Pauli quark form
factors, f1± and f2±, are chosen to be consistent with the
mechanism of vector meson dominance, depicted in Fig.4.
VMD motivates the following parametrization [23, 27]

f1±(Q
2) = �q + (1 � �q)

m2
v

m2
v +Q2

+ c±
M2

hQ
2

(M2
h +Q2)2

f2±(Q
2) = ±

⇢
d±

m2
v

m2
v +Q2

+ (1 � d±)
M2

h

M2
h +Q2

�
,

(2.4)

where mv is a light vector meson mass, Mh is a mass of
an e↵ective heavy vector meson, ± are quark anoma-
lous magnetic moments. The mixture coe�cients c±, d±
are phenomenologically fixed by the proton and neutron
elastic electromagnetic form factors. The parameter �q

is related to the quark density number and fixed by deep
inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
produce the charge and anomalous magnetic moment of
the u and d quarks.

The CST phenomenological choice for a VMD param-
eterization of the current, as represented in Fig. 4, is

consistent with the inhomogeneous Bethe-Salpeter equa-
tion that is to be solved to find the quark-photon vector
vertex �µ [30]

�µ(p,Q) = �µ + (2.5)
Z

d4q

(2⇡)4
K(p, q,Q)S(q + ⌘Q)�µ(q,Q)S(q � ⌘Q)

where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.

B. Connection of the model to LQCD

The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts

on the pion cloud contribution to the �(1232) electroex-
citation is consistent with the EBAC (Excited Baryon
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the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.

B. Connection of the model to LQCD

The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts

on the pion cloud contribution to the �(1232) electroex-
citation is consistent with the EBAC (Excited Baryon

Quark-photon vertex
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Meson Dominance at the quark level,
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of the full meson spectrum contribution 
to the quark-photon coupling.
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D. Properties of the wave functions under a Lorentz
transformation

The form for the wave functions given in Eq. (2.39)
holds only for the case where the particle is moving along

the z direction [with 4-momentum P¼ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

HþP2
q

;0;0;PÞ].
The generic wave function can be obtained from an arbi-
trary Lorentz transformation !

P0! ¼ !!
"P": (2.46)

Under a Lorentz transformation we obtain

"!P0 ¼!!
" ""P w0

#ðP0Þ ¼!#
$Sð!Þw$ðPÞ

u0ðP0Þ ¼ Sð!ÞuðPÞ D$#ðP0; k0Þ ¼!$
%!#

&D%&ðP;kÞ
S%1ð!ÞðP 0

SÞ$#Sð!Þ ¼!$
%!#

&ðP SÞ%&; (2.47)

where u0 and w0
# represent the states in the arbitrary frame.

For simplicity, the dependence of the spinor states on the
Wigner rotations acting on the polarization vectors has not
been shown explicitly, and ðP SÞ are the projectors of (2.25)
with ðP 0

SÞ the same projectors with P0 ¼ !P, one obtains
the transformation law

Z 0
#ðP0; k0Þ ¼ Sð!Þ!#

$Z$ðP; kÞ (2.48)

for any vector-spinor state Z. Finally, from (2.48) the
transformation laws for the total " wave function follows

#0
"ðP0; k0Þ ¼ Sð!Þ#"ðP; kÞ: (2.49)

In conclusion, we may derive the baryon wave function
in any frame, where the four-momentum P is arbitrary, by
means of a Lorentz transformation ! on the wave function
defined in the baryon rest frame.

III. FORM FACTORS FOR THE !N ! !
TRANSITION

A. Definitions

The electromagnetic N" transition current is

J! ¼ $w#ðPþÞ%#!ðP; qÞ'5uðP%Þ(I0I; (3.1)

where Pþ (P%) is the momentum of the " (nucleon), I0 (I)
the isospin projection of the " (nucleon), and the operator
%#" can be written in general [93] as

%#!ðP; qÞ ¼ G1q
#'! þG2q

#P! þG3q
#q! %G4g

#!:

(3.2)

Although we have omitted the helicity indices for these
states, the transition current depends on both the helicities
of the final and initial baryons and on the photon helicity.
The variables P and q are, respectively, the average of
baryon momenta and the absorbed (photon) momentum

P ¼ 1

2
ðPþ þ P%Þ q ¼ Pþ % P%: (3.3)

The form factors Gi, i ¼ 1; . . . ; 4 are functions of Q2 ¼
%q2 exclusively. Because of current conservation,
q!%

#! ¼ 0, only three of the four form factors are inde-
pendent. In particular, we can writeG4 in terms of the other
three form factors as

G4 ¼ ðMþmÞG1 þ
M2 %m2

2
G2 %Q2G3; (3.4)

and adopt the structure originally proposed by Jones and
Scadron [93]. Alternatively (see below), we can writeG3 in
terms of the other three

G3 ¼
1

Q2

"
ðMþmÞG1 þ

M2 %m2

2
G2 %G4

#
: (3.5)

The parametrization (3.2) in terms of the form factorsGi

is not the most convenient one for comparison with the
experimental data. More convenient are the magnetic di-
pole (M), electric quadrupole (E), and Coulomb quadru-
pole (C) form factors. These can be defined directly in
terms of helicity amplitudes [16,93]. Note that the form
factor G3 does not enter directly into the expressions for
the helicity amplitudes because )!&

* q! ¼ 0 for all *. But, if
we use the constraint (3.4) to eliminate G4, G3 appears in
these expressions and we obtain

G&
MðQ2Þ ¼ +

$
½ð3MþmÞðMþmÞ þQ2(G1

M

þ ðM2 %m2ÞG2 % 2Q2G3

%
; (3.6)

G&
EðQ2Þ ¼ +

$
ðM2 %m2 %Q2ÞG1

M
þ ðM2 %m2ÞG2

% 2Q2G3

%
; (3.7)

G&
CðQ2Þ ¼ +f4MG1 þ ð3M2 þm2 þQ2ÞG2

þ 2ðM2 %m2 %Q2ÞG3g; (3.8)

where

+ ¼ m

3ðMþmÞ : (3.9)

These three form factors G&
a (a ¼ M, E, C) are, respec-

tively, the magnetic, electric and Coulomb (or scalar)
multipole transition form factors.
As G&

M dominates at low momentum Q2, the following
ratios are useful

REMðQ2Þ ¼ % G&
EðQ2Þ

G&
MðQ2Þ ; (3.10)

and

RSMðQ2Þ ¼ % jqj
2M

G&
CðQ2Þ

G&
MðQ2Þ ; (3.11)

D-STATE EFFECTS IN THE ELECTROMAGNETIC . . . PHYSICAL REVIEW D 78, 114017 (2008)
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qµ��µ = 0

• Only 3 Gi are independent:

E.M. Current has to be conserved

γN→Δ

GM, GE, GC   Scadron-Jones popular choice.
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FIG. 2: Results for the γ∗N → ∆ transition. Data shown
are for the γ∗p → ∆+ reaction, from DESY [62], SLAC [63],
CLAS/JLab [64] and MAID analysis [65, 66]. Data for the large
Q2 region from CLAS/JLab are not included [77]. EBAC results
are from Ref. [68].

B. Symmetry between different transitions

Roughly, we can classify the results for the γ∗B → B′

transition form factors according to the magnitudes of
magnetic dipole form factor G∗

M :

large : γ∗N → ∆, γ∗Λ → Σ∗0,

γ∗Σ+ → Σ∗+, γ∗Ξ0 → Ξ∗0,

moderate : γ∗Σ0 → Σ∗0,

small : γ∗Σ− → Σ∗−, γ∗Ξ− → Ξ∗−.

This classification has an implication for the magnitudes
of the decay widths as we will see in the next section.
The observed magnitudes for G∗

M mainly reflect the
dominant valence quark structure, although modified by
the effect of the pion cloud. As mentioned in Sec. III A
based on Table III, except for the deviations due to the
mass differences, we can expect similar results for the
γ∗Σ+ → Σ∗+ and γ∗Ξ0 → Ξ∗0 transitions. The same
holds for the reactions γ∗Σ− → Σ∗− and γ∗Ξ− → Ξ∗−.
We compare the results for these reactions directly in
Fig. 6.
Note in Fig. 6, the closeness between the results for the

two reactions both for the bare (dashed lines) and the
total (solid lines). These results are the consequences
of the following two effects: similarity in the valence
quark structure, and identical contribution from the pion
cloud contributions (see Table V). Concerning the va-
lence quark contributions, the similarity in the results of
the two reactions is a combination of the identical tran-
sition current coefficients (jSi ) and the kinematics. In
fact, although the mass configurations are different for
the γ∗Σ → Σ∗ and γ∗Ξ → Ξ∗ reactions, the transition
three-momentum |q| at Q2 = 0 in the baryon B′ rest
frame, are almost the same, 0.18 GeV and 0.20 GeV re-
spectively.
The difference in magnitude between the two sets,

(γ∗Σ+ → Σ∗+, γ∗Ξ0 → Ξ∗0) and (γ∗Σ− → Σ∗−,

Gb
M (0) Gπ

M (0) G∗
M (0) |G∗

M (0)|exp
γ∗p → ∆+ 1.63 1.32 2.95 3.04± 0.11 [4]

γ∗n → ∆0 1.63 1.32 2.95 3.04± 0.11 [4]

γ∗Λ → Σ∗0 1.68 0.92 2.60 3.35± 0.57 [4]

γ∗Σ+ → Σ∗+ 2.09 0.26 2.35 4.10± 0.57 [5]

γ∗Σ0 → Σ∗0 0.97 0.00 0.97

γ∗Σ− → Σ∗− −0.15 −0.26 −0.42 < 0.8 [8]

γ∗Ξ0 → Ξ∗0 2.19 0.26 2.46

γ∗Ξ− → Ξ∗− −0.17 −0.26 −0.43

TABLE VI: Results for G∗
M (0). Values for |G∗

M (0)|exp are es-
timated by Eq. (4.1) using the experimental values of ΓB′→γB .

γ∗Ξ− → Ξ∗−) in our model, is a consequence of the ap-
proximate SU(3) symmetry. Furthermore, as commented
in Sec. III A, a model with the exact SU(3) symmetry
limit would give no contribution for the last two reac-
tions. In contrast, the small violation of the symmetry,
in particular in the SU(2) sector due to the asymmetry
between the isoscalar and isovector quark form factors
f±(Q2), is the reason why the present model is success-
ful in the description of the neutron electric form fac-
tor [34, 35, 39]. In other approaches the small magnitude
of the G∗

M results for the γ∗Σ− → Σ∗− and γ∗Ξ− → Ξ∗−

reactions, can be a consequence of U -spin symmetry [9].
We can also study the relation between the transitions

γ∗N → ∆ and γ∗Λ → Σ∗0 based on the similarity sug-
gested by the valence quark structure given in Table III.
From Table III, we may conclude that the transition form
factors between the γ∗Λ → Σ∗0 and γ∗N → ∆ reactions

differ by a factor
√

3
4 , if only the valence quark con-

tributions are considered. We examine this in Fig. 7,
by comparing the form factor of γ∗N → ∆ to that of

γ∗Λ → Σ∗0 multiplied by
√

4
3 . However, the results

must be interpreted with care. Focusing on the final
results (total, solid lines), the similarity between the re-
sults for the two reactions is an accidental combination of
a large pion cloud effect and a smaller core contribution
for the γ∗N → ∆ reaction, and the opposite, a smaller
pion cloud effect and a larger core contribution for the
γ∗Λ → Σ∗0 reaction. The symmetry properties should be
better observed in the bare contributions (dashed lines).
In fact, the two dashed lines have a similar shape, but
differ in magnitudes by about 20% near Q2 = 0. This is
a consequence of the differences in the masses and radial
wave functions.
Then, we conclude that the closeness between the total

results for the γ∗N → ∆ and γ∗Λ → Σ∗0 reactions, also
predicted by the U -spin symmetry, is accidental, since
the pion cloud contributions should break the symmetry
appreciably. In fact, for the γ∗N → ∆ reaction, the pion
cloud contribution is 80% of the quark core contribution,
while in the γ∗Λ → Σ∗0 reaction, the pion contribution is
55%. Note that, the U -spin symmetry takes into account

Separation seems to be supported by experiment.
Missing strength of GM at the origin.

γN→Δ

Model independent feature

2009CST©
Bare quark core:
• dominates in the large

region.

• agrees with other
calculations (“EBAC”) with pion
couplings switched off.

Q2



Missing strength of GM at the origin is an universal feature, even in
dynamical quark calculations.

γN→Δ

Model independent feature

Eichmann et al., Prog. Part. Nucl. Phys. 91 (2016)

Effect of vicinity of the 
mass of the Delta to 
the pion-nucleon 
threshold.



Bare quark (partonic) and pion cloud (hadronic) components

Timelike: |G∗M | - new model

New model: consider the explicit connection with the

microscoptic pion cloud structure – quarks with structure

(a) Coupling with pion on the air:
related with pion electromagnetic form factor Fπ(q2)

(b) Coupling with intermediate baryon states (octet/decuplet):
parametrized effectively by [G̃D(q2)]2 ∝ 1/Q8

G̃D(q2) =
Λ4
D

(Λ2
D − q2) + Λ2

DΓ2
D(q2)

,

Λ2
D cutoff: parametrize mass scale of intermediate reson. (Λ2

D ≈ 1 GeV2)
ΓD(q2) effective width, constraint to ΓD(0) = 0

Gilberto Ramalho (IIP/UFRN, Natal,Brazil) SL and TL e.m. baryon FF Estoril, October 9, 2015 37 / 55

+ +

Pion cloud component
suppressed for high Q2

1
Q8

For low Q2 : add coupling with pion in flight.

Bare quark component
component Pion cloud component

Pion created by the overall baryon 
not from a single quark

pairs  from a single quark 
included in dressing

qq̄



VMD as link to LQCD

VMD

In the current the vector meson mass 
is taken as a function of the running 

pion mass. 

Pion cloud contribution 
negligible for large pion masses

quark model  

calibrated to the 

lattice data

Take the limit of the physical 
pion mass value

experimental data 
well described in 

the large Q
2

region. 



• Bare quark model gives good description in the  
high momentum transfer region.

• Use CST quark model to infer meson cloud from 
the data.

• Important role of meson cloud extracted 
dominated by the isovector part, due to the     N 
and          channels.

Consistent with Aznauryan and Burkert, PRC 85 
055202  2012 and PDG

G. Ramalho, M. T. P. , PHYSICAL REVIEW D 95 014003 (2017)

In our first work in Ref. [20] the meson cloud was
different than the one that we are using here. The reason is
that the meson model associated with Fig. 2(b) was,
meanwhile, reparametrized in Ref. [7] to fix the incorrect
position of the rho mass pole given by our first model, as
well as by other popular parametrizations [7]. In addition,
we notice that, in this new parametrization, the γ!N → Δ
transition pion cloud is directly connected to the pion
electromagnetic form factor Fπðq2Þ, which is well estab-
lished experimentally in the timelike region [7].
The parameters used in the formulas (5.22)–(5.24) were

determined by their fit to the γ!N → N!ð1520Þ spacelike

form factors, giving aM ¼ 5.531 GeV−2, λð4Þπ ¼ −1.019,
λMπ ¼ −0.323, λCπ ¼ −1.678, Λ2

4 ¼ 10.2 GeV2, Λ2
M ¼

1.241 GeV2, and Λ2
C ¼ 1.263 GeV2. The results are pre-

sented in Fig. 3 as a function of Q2 ¼ −q2 and compared
with the spacelike data [48–50]. Check Ref. [20] for a more
detailed discussion of the data. In the figure we also show
the valence quark contributions (the dashed line) and the
meson cloud contributions (the dashed-dotted line) based
on the parametrizations described above.
In the Appendix, we discuss the technical aspects of

the regularization of the singularities appearing in the
multipoles of Eqs. (5.22)–(5.24).

VI. RESULTS

We present in this section our predictions for the
γ!N → N!ð1520Þ transition form factors in the timelike
region. Using these results, we also calculate the γN and
eþe−N decay widths.

A. Form factors

The predictions for the absolute values of the form
factorsGM,GE, andGC in the timelike region are presented
in Fig. 4 for the cases W ¼ 1.52, 1.8, and 2.1 GeV. The
valence quark core contributions are given by the thin lines.
They stand very near the horizontal axis and vanish in the
upper limit, q2 ¼ ðW −MÞ2, by kinematic constraints. The
same result was observed in the quadrupole form factors of
the γ!N → Δð1232Þ transition for the physical case, when
W ¼ MΔ ≃ 1.232 GeV [51].
Figure 4 shows that the meson cloud contribution largely

dominates. Only near the ω pole (q2 ≃ 0.6 GeV2) is there a
significant contribution from the quark core for the absolute
value of the form factors GM and GE. This effect is very
concentrated near q2 ≃m2

ω as a consequence of the small ω
width, Γωðm2

ωÞ.
InGC the effect of the ω pole is not observed. This is due

to the cancellation of the isoscalar contributions to the form
factorGC. This cancellation is obtained analytically and can
be confirmed by substituting the form factors G1, G2, G3

given by Eqs. (5.14)–(5.16) into the formula of Eq. (5.10)
for GC. One concludes that only the quark isovector form
factors, f1− and f2−, contribute to GC.
From Fig. 4, one concludes that a fairly good description

of the γ!N → N!ð1520Þ transition can be obtained without
the valence quark core contributions, which are very small.
The almost perfect coincidence, both forGM andGE, of the
lines corresponding to different values of W is also a
consequence of the dominance of the meson cloud com-
ponent since only the valence part depends on W. Only for
GC can one distinguish a slight W dependence, and this is
evident because the valence quark contributions are non-
zero when q2 ¼ 0. The main role of the mass dependence
W in the behavior of the form factors is then to constrain
them for q2 ≤ ðW −MÞ2.
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FIG. 3. Valence quark core plus meson cloud contributions to
the spacelike form factors as a function of Q2 ¼ −q2. Data come
from Ref. [48] (the full circles), Ref. [49] (the empty circles), and
PDG [50] (the square).
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N(1535)

Jµ = ūR

[

F ∗

1

(

γµ −
"qqµ

q2

)

+ F ∗

2

iσµνqν
MN +MR

]

γ5uN

Phenomenology

! F ∗
1 has important valence quark contributions

! F ∗
2 seems to have relevant meson cloud contributions

Spectator: partial description of the transition
Use QM to estimate meson cloud parametrization from the data

N→ N *(1535) JP=1/2- I=3/2
~50% decay to    N
~50% decay to    N

⇡
η

• Bare quark effects dominate F1* 
for large

• Meson cloud effects dominate F2* with
meson cloud extending to high      region.

• Use CST quark model to infer meson 
cloud from the data.

Again good agreement of bare
quark core with EBAC analysis

Q2

(effect from the    N channel?).η

Q2

TFFs

1 Introduction

The present work is a concise review of the recent theoretical and experimental results about the electromagnetic
structure of the baryons and baryon excitations. Our main focus is the nucleon excitations, since are the systems
that have been studied in more detail with increasing precision. Nevertheless, we present also a summary of
the recent results for baryons with strange and heavy quarks.
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Figure 1.1: Representation of the transverse �p Ñ ⇡`n cross section with Q2 “ 1 GeV2. Notice the bumps
associated to the first, second and third resonance region. Calculation using the MAID 2007 parametrization [9,
10]. The vertical lines indicate some of the more relevant nucleon resonances (N˚).
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Figure 1.2: Representation of the transverse �p Ñ ⇡`n cross section with Q2 “ 1 GeV2. Notice the bumps
associated to the first, second and third resonance region. Calculation using the MAID 2007 parametrization [9,
10]. The vertical lines indicate some of the more relevant nucleon resonances (N˚).

The present structure is based on the preliminary reading of the Refs. [1, 2, 3, 4]. More references can be
found in biblo.bib in the BiBTeX format.

Along this work we use the PDG 2020 [5] as reference to experimental results. In the cases there was
modification in the lastest version of PDG we mention the current PDG 2002 publication [6].
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N(1535) – proton target – infered meson cloud
G Ramalho and MT Peña, in preparation

FMC
1 = Q2C̃(Q2)τ3 FMC

2 = A(Q2) +B(Q2)τ3

Isovector dominance: (B ! A)
AV

1/2(0) = 0.090± 0.013 GeV−1/2; AS
1/2(0) = 0.015± 0.013 GeV−1/2
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Extension to the Timelike region

(a)                   (b)

Timelike: |G∗M | - new model

New model: consider the explicit connection with the

microscoptic pion cloud structure – quarks with structure

(a) Coupling with pion on the air:
related with pion electromagnetic form factor Fπ(q2)

(b) Coupling with intermediate baryon states (octet/decuplet):
parametrized effectively by [G̃D(q2)]2 ∝ 1/Q8

G̃D(q2) =
Λ4
D

(Λ2
D − q2) + Λ2

DΓ2
D(q2)

,

Λ2
D cutoff: parametrize mass scale of intermediate reson. (Λ2

D ≈ 1 GeV2)
ΓD(q2) effective width, constraint to ΓD(0) = 0
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+ +
(a)                   (b)

The residue of the pion from factor Fπ(q2)  at the timelike pole 
is proportional to the                              decay

Diagram (a) related with pion electromagnetic form factor Fπ(q2) 

⇢ ! ⇡⇡
⇢

Fπ(q2) 



Crossing the boundaries

γN→Δ
Ramalho, Pena, Weil, Van Hees, Mosel, Phys.Rev. C93 (2016)

time
like

spacelike

space
like

(1232) Dalitz decay �

Timelike: |G∗M | - new model (3)

Fρ(q
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π
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ρ
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π
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ρ
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Fiting the |Fπ(q2)|2 data

Fπ(q
2) =

α
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πβq
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Parametrization of pion Form Factor

Extension to Timelike

Parametrization of 
pion Form Factor



Timelike region (1232) Dalitz decay �

∆ Dalitz decay: ΓγN(W ) and Γe+e−N(W )

Width function Γγ∗N (q;W ) with q =
√

q2

y± = (W ±M)2 − q2

F. Dohrmann et al, ERJA 45, 401 (2010)

Γγ∗N (q;W ) =
α

16

(W +M)2

M2W 3

√
y+y−y−|GT (q

2,W )|2

|GT (q
2;M∆)|2 = |G∗

M (q2;W )|2 + 3|G∗
E(q

2;W )|2 +
q2

2W 2
|G∗

C(q
2;W )|2
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∆ Dalitz decay: ΓγN(W ) and Γe+e−N(W )

Width function Γγ∗N (q;W ) with q =
√

q2

y± = (W ±M)2 − q2

F. Dohrmann et al, ERJA 45, 401 (2010)

Γγ∗N (q;W ) =
α

16

(W +M)2

M2W 3

√
y+y−y−|GT (q

2,W )|2

|GT (q
2;M∆)|2 = |G∗

M (q2;W )|2 + 3|G∗
E(q

2;W )|2 +
q2

2W 2
|G∗

C(q
2;W )|2

Then
ΓγN (W ) ≡ Γγ∗N (0;W )

Γe+e−N (W ) =
2α

3π

∫ W−M

2me

Γγ∗N (q;W )
dq

q

threshold: 2me (γ∗ → e+e−); upper limit q2 = (W −M)2

|G∗
M |2 model⇒ model for ΓγN and Γe+e−N
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In this work we start with the quark model described in
Ref. [20] for the N!ð1520Þ resonance and extend it to the
region q2 > 0. In addition to the contribution from the
bare core, we take also a meson cloud contribution. This
contribution is modeled within the lines of our previous
study of the Δð1232Þ in the timelike region, i.e., with the
pion-photon coupling parametrized by the pion form factor
data [7].
Three conclusions emerged in the context of our model:

(i) the γ!N → N!ð1520Þ timelike transition form factors are
dominated by the meson cloud contributions; (ii) in the
range q2 ¼ 0–1 GeV2, the constant form factor model
(also known as QED approximation) usually taken in
the literature underestimates the electromagnetic coupling
of the N!ð1520Þ with consequences for the differential
Dalitz decay width; (iii) in addition to the Δð1232Þ
resonance, the N!ð1520Þ has a role in dilepton decay
reactions at intermediate energies.
This article is organized as follows. In Sec. II we describe

the methodology used to extend a valence quark model
fixed in the spacelike region to the timelike region. Next,
in Sec. III, we discuss the relation between the γ!N →
N!ð1520Þ form factors and the formulas for the photon
and Dalitz decay widths of the N!ð1520Þ. The formalism of
the covariant spectator quark model used here is presented
briefly in Sec. IV. In Sec. V we discuss the formulas used to
calculate the γ!N → N!ð1520Þ form factors. The results for
the form factors in the timelike region and the N!ð1520Þ
decay widths are presented in Sec. VI. Outlook and
conclusions are presented in Sec. VII.

II. METHODOLOGY

In the covariant spectator quark model, the application
of impulse approximation to the interaction of a photon
with a baryon, seen as a three quark qqq state, justifies that
one integrates out the relative internal momentum in the
spectator diquark subsystem [21,25,26]. After this internal
momentum integration, in the process of the covariant
integration over the global momentum of the interacting
diquark, one may keep only the main contribution, which is
originated by the on-mass-shell pole of the diquark—while
the remaining quark that interacts with the photon is taken
to be off mass shell [25]. This last integration on the on-
shell diquark internal momenta amounts to having the qqq
system as a quark-diquark system, and to treating the
diquark with an effective average mass mD [21,25,26]. It is
also an ingredient of the model that the electromagnetic
quark current is represented by a parametrization of vector
meson dominance [21,26,34,35]. In addition to the con-
tributions from the core of valence quarks, the covariant
spectator quark model can include also a covariant para-
metrization of the meson cloud effects that are important in
the low momentum transfer region and that depend on the
baryons participating in the reaction [6,7,22,23,31,36–38].

Here, the extension of the model to the timelike regime
requires two important modifications:

(i) The nucleon and the N!ð1520Þ quark core wave
functions have to be calculated in timelike kinematic
conditions, depending on an arbitrary massW which
can differ from the resonance mass, labeled MR.

(ii) The electromagnetic quark current has also to be
extended to the timelike regime. That is done by
introducing finite mass widths for the ρ and ω
mesons.

For the γ!N → Δð1232Þ transition in the timelike region,
we have already found that themeson cloud contributions are
important, in comparison to the valence quark contributions
[7]. It isworthwhile now to testwhether the same phenomena
occurs for the N!ð1520Þ resonance, which carries, in
particular, a different isospin. In our model the valence
quark contributions for themagnetic and electric form factors
vanish at the photon point (q2 ¼ 0) due to the orthogonality
of the initial and final state wave functions [20]. Other
valence quark models estimate them as nonzero contribu-
tions (a discussion can be found in Ref. [20]). Since, in our
model, the valence quark contributions for the electric
and magnetic transition form factors vanish at q2 ¼ 0,
their extension to the q2 > 0 region gives nonzero but
small contributions for those transition form factors.
Nevertheless, our model can provide a good approximation
for the N!ð1520Þ resonance in the timelike region based
on the meson cloud contributions, which dominate in the
timelike region. Moreover, the form factors show a depend-
ence on q2 with consequences for the analysis of reactions in
the timelike region, where the electromagnetic couplings are
often fixed at their value atq2 ¼ 0 (theQEDapproximation).

III. N!ð1520Þ DALITZ DECAY

The N!ð1520Þ resonance is a JP ¼ 3
2
− state, with isospin

I ¼ 1
2. The N

!ð1520Þ Dalitz decay into the nucleon can be
expressed in terms of the decay width [39]

Γγ!Nðq;WÞ¼ 3α
16

ðW−MÞ2

M2W3

ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
yþjGTðq2;WÞj2; ð3:1Þ

where q ¼
ffiffiffiffiffi
q2

p
, α is the fine-structure constant,

y& ¼ ðW &MÞ2 − q2; ð3:2Þ

and jGTðq2;WÞj2 is a combination of the electromagnetic
transition form factors given by

jGTðq2;WÞj2 ¼ 3jGMðq2;WÞj2 þ jGEðq2;WÞj2

þ q2

2W2
jGCðq2;WÞj2: ð3:3Þ

In the previous equation GM, GE, and GC are, respectively,
the magnetic dipole, electric, and Coulomb quadrupole

G. RAMALHO and M. T. PEÑA PHYSICAL REVIEW D 95, 014003 (2017)
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Radiative decay widths N*(1520)

Devenish (1976) normalization of transition form factors

Result Consistent with PDG value for    N decay width.
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Dielectron Dalitz decay widths N*(1520)

Neutron and Proton light dilepton decay width
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Decay widths N*(1535)   

Different results for proton and neutron electromagnetic widths
due to iso-scalar term in the eta meson cloud.

Timelike results give information on the neutron.

VI. RESULTS FOR THE RADIATIVE
AND DALITZ DECAY WIDTHS

We present in this section the observables associated
with the timelike region. First, we present our results for the
radiative decay widths (ΓγN). Next we discuss our results
for the dilepton decay rates d

dqΓeþe−Nðq;WÞ. We also show
the results for the Dalitz decay widths (Γeþe−N), as function
of W. We consider the proton and neutron cases.

A. Radiative decay widths

The radiative decay widths for the proton and neutron are
determined by the function Γγ$Nðq;WÞ as defined by
Eq. (5.1) in the limit q2 ¼ 0, when the virtual photon
became real.
The results for ΓγN are presented in Fig. 12, for the

proton and neutron cases. Our results differ significantly
from the results of a model with constant form factors.
Notice that the result for ΓγN is related to jGTð0;WÞj2.

The results of the function jGTð0;WÞj are presented
in Fig. 13. From the figure it is clear that the constant

form factor, i.e., a W independent form factor, is a bad
approximation.
The results for ΓγNðWÞ for the physical point (W ¼ MR)

compare well with experimental values presented in
Table III. The data presented in Fig. 12 are PDG results
based on the amplitudes A1=2ð0Þ (fourth column of
Table III). The uncertainties in the widths are the conse-
quence of limits on A1=2ð0Þ [proportional to GEð0Þ]. Note
that there is some overlap between the data results for the
proton and neutron, meaning that the data are compatible
with an identical result for both decays (exact isospin
symmetry).
In our model, the isospin symmetry is clearly broken in

the Nð1535Þ → γN decay. The good agreement between
model and data is a consequence of the accurate description
of the transition form factor GE at q2 ¼ 0, for both isospin
channels.

B. Dalitz decay rates

The dilepton decay rate d
dqΓeþe−Nðq;WÞ can be calcu-

lated combining Eq. (5.3) with Eq. (5.1). The results for
W ¼ 1.2, 1.4 and 1.535 GeVare presented in Fig. 14 for the
proton (left panel) and neutron (right panel) cases. The
upper limit in q is determined by q ¼ W −MN, as before.
From Fig. 14, we can conclude that the more relevant

kinematic regions, for both channels, is the low-q region or
near the pseudothreshold for large W, where there is a
substantial enhancement of the decay rate. In the figure,
one can also notice that the magnitude of the decay rates
near q2 ¼ 0 is larger for the proton.

C. Dalitz decay widths

The function Γeþe−NðWÞ is determined by the integral of
the dilepton decay rate according to Eq. (5.4). The results
for the proton and neutron cases are presented in Fig. 15.
In the figure we can notice a dominance of the

proton decay width up to W ¼ 1.4 GeV and very close
values for proton and neutron cases near W ¼ 1.5 GeV.
Above 1.5 GeV, close to the ρ meson mass pole
(W ¼ MN þmρ ≃ 1.7 GeV) the effect of the correspond-
ing pole starts to manifest. The main effect is the enhance-
ment of Γeþe−NðWÞ. We have a glimpse of this effect in the
graph for the neutron decay (dashed line).
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FIG. 12. Radiative decay width as a function of W for the
proton and neutron cases. The data (W ¼ MR) are determined
from the PDG data for the amplitude A1=2ð0Þ.
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FIG. 13. Effective form factor function jGTð0; WÞj for the
proton and neutron cases.

TABLE III. Nð1535Þ → γN decay widths. The estimate repre-
sents the PDG result calculated from the amplitude A1=2ð0Þ. The
results for the PDG limits are obtained from the branching ratios.

A1=2ð0Þ [GeV−1=2] ΓγN [MeV]

Data Model Estimate PDG limits Model

p 0.105& 0.015 0.101 0.49& 0.14 0.19–0.53 0.503
n −0.075& 0.020 −0.074 0.25& 0.13 0.013–0.44 0.240
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JP=1/2- I=1/2
~50% decay to    N
~50% decay to    N

⇡
η

VI. RESULTS FOR THE RADIATIVE
AND DALITZ DECAY WIDTHS

We present in this section the observables associated
with the timelike region. First, we present our results for the
radiative decay widths (ΓγN). Next we discuss our results
for the dilepton decay rates d

dqΓeþe−Nðq;WÞ. We also show
the results for the Dalitz decay widths (Γeþe−N), as function
of W. We consider the proton and neutron cases.

A. Radiative decay widths

The radiative decay widths for the proton and neutron are
determined by the function Γγ$Nðq;WÞ as defined by
Eq. (5.1) in the limit q2 ¼ 0, when the virtual photon
became real.
The results for ΓγN are presented in Fig. 12, for the

proton and neutron cases. Our results differ significantly
from the results of a model with constant form factors.
Notice that the result for ΓγN is related to jGTð0;WÞj2.

The results of the function jGTð0;WÞj are presented
in Fig. 13. From the figure it is clear that the constant

form factor, i.e., a W independent form factor, is a bad
approximation.
The results for ΓγNðWÞ for the physical point (W ¼ MR)

compare well with experimental values presented in
Table III. The data presented in Fig. 12 are PDG results
based on the amplitudes A1=2ð0Þ (fourth column of
Table III). The uncertainties in the widths are the conse-
quence of limits on A1=2ð0Þ [proportional to GEð0Þ]. Note
that there is some overlap between the data results for the
proton and neutron, meaning that the data are compatible
with an identical result for both decays (exact isospin
symmetry).
In our model, the isospin symmetry is clearly broken in

the Nð1535Þ → γN decay. The good agreement between
model and data is a consequence of the accurate description
of the transition form factor GE at q2 ¼ 0, for both isospin
channels.

B. Dalitz decay rates

The dilepton decay rate d
dqΓeþe−Nðq;WÞ can be calcu-

lated combining Eq. (5.3) with Eq. (5.1). The results for
W ¼ 1.2, 1.4 and 1.535 GeVare presented in Fig. 14 for the
proton (left panel) and neutron (right panel) cases. The
upper limit in q is determined by q ¼ W −MN, as before.
From Fig. 14, we can conclude that the more relevant

kinematic regions, for both channels, is the low-q region or
near the pseudothreshold for large W, where there is a
substantial enhancement of the decay rate. In the figure,
one can also notice that the magnitude of the decay rates
near q2 ¼ 0 is larger for the proton.

C. Dalitz decay widths

The function Γeþe−NðWÞ is determined by the integral of
the dilepton decay rate according to Eq. (5.4). The results
for the proton and neutron cases are presented in Fig. 15.
In the figure we can notice a dominance of the

proton decay width up to W ¼ 1.4 GeV and very close
values for proton and neutron cases near W ¼ 1.5 GeV.
Above 1.5 GeV, close to the ρ meson mass pole
(W ¼ MN þmρ ≃ 1.7 GeV) the effect of the correspond-
ing pole starts to manifest. The main effect is the enhance-
ment of Γeþe−NðWÞ. We have a glimpse of this effect in the
graph for the neutron decay (dashed line).
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FIG. 12. Radiative decay width as a function of W for the
proton and neutron cases. The data (W ¼ MR) are determined
from the PDG data for the amplitude A1=2ð0Þ.
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FIG. 13. Effective form factor function jGTð0; WÞj for the
proton and neutron cases.

TABLE III. Nð1535Þ → γN decay widths. The estimate repre-
sents the PDG result calculated from the amplitude A1=2ð0Þ. The
results for the PDG limits are obtained from the branching ratios.

A1=2ð0Þ [GeV−1=2] ΓγN [MeV]

Data Model Estimate PDG limits Model

p 0.105& 0.015 0.101 0.49& 0.14 0.19–0.53 0.503
n −0.075& 0.020 −0.074 0.25& 0.13 0.013–0.44 0.240
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The dominance of the Dalitz decay width for proton
decay over the results for neutron decay is explained by the
dominance of the dilepton decay rates near q ¼ 0, as can be
confirmed by Fig. 14 (right panel versus left panel). For
larger values of q (and larger W) the magnitude of the
neutron dilepton decay rates increases more in comparison
to the proton dilepton decay rates (see Fig. 14). When we
integrate on q to obtain Γeþe−NðWÞ, the impact of the large
q region on the dilepton decay rate is larger, and the neutron
Dalitz decay width is enhanced.
Since we aim at the range of the HADES experiments,

we do not go beyond W ≃ 1.55 GeV. The values of the
function Γeþe−NðWÞ, at W ¼ MR are given in Table IV.
From the table we can conclude that the results for proton
and neutron decays are very close, Γeþe−NðMRÞ ≃ 6–7 keV.
This result contrasts with what occurs in the radiative

decay, ΓγNðMRÞ, where the widths for the two isospin
channels differ much more.
In a model where we reduce the isoscalar component

Að0Þ by about 0.05, which as discussed in Sec. III E
[Að0Þ → Að0Þ − 0.05 ≃ 0.075] is still well within the
experimental limits, the results for Γeþe−NðWÞ are almost
indistinguishable in the two channels.
The timelike data about the neutron decays is very

important because they provide information about the
neutron structure which is not available at the moment
from spacelike experiments. For this reason pion-induced
reactions at HADES [6,7] are fundamental to pin down the
electromagnetic structure of the neutron and complement
the information from the spacelike region.
In Fig. 16, we compare the Nð1535Þ Dalitz widths with

estimates for other light mass resonances, based on the
covariant spectator quark model. We show the results for
the Δð1232Þ32

þ, where the pion cloud contributes with
about 45% to the transition form factors at the photon point
[3], and also the results for Nð1520Þ32

− [5].
Figure 16 shows that the Δð1232Þ32

þ dominates within
the range of W considered, although the Δð1232Þ Dalitz
decay at the pole is measured for smaller values of W.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.710-8

10-7

10-6

10-5

10-4

10-3

d!
e+ e- N /d

q 

W = 1.200 GeV

W = 1.400 GeV

W = 1.535 GeV

proton

0 0.1 0.2 0.3 0.4 0.5 0.6 0.710-8

10-7

10-6

10-5

10-4

10-3

d!
e+ e- N /d

q 

W = 1.200 GeV

W = 1.400 GeV

W = 1.535 GeV
neutron

FIG. 14. Dilepton decay rates d
dqΓeþe−Nðq;WÞ for the cases W ¼ 1.2, 1.4 and 1.535 GeV. The upper limit in q is W −MN .

TABLE IV. Nð1535Þ → γN Dalitz decay widths, estimated by
the present model.

Γeþe−N (keV)

p 5.7
n 7.2
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FIG. 15. Dalitz decay widths as a function of W for the proton
and neutron.
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FIG. 16. Comparison between Dalitz decay widths Γeþe−NðWÞ
for different resonances. Models are from Refs. [3,5]. The
diamonds indicate the Dalitz decay widths at the physical point
(W ¼ MR).
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Comparison between different resonances

Dominance of the J=3/2 channel

G. Ramalho and M.T. P. Phys.Rev.D 101 (2020) 11, 114008, (2020)

The dominance of the Dalitz decay width for proton
decay over the results for neutron decay is explained by the
dominance of the dilepton decay rates near q ¼ 0, as can be
confirmed by Fig. 14 (right panel versus left panel). For
larger values of q (and larger W) the magnitude of the
neutron dilepton decay rates increases more in comparison
to the proton dilepton decay rates (see Fig. 14). When we
integrate on q to obtain Γeþe−NðWÞ, the impact of the large
q region on the dilepton decay rate is larger, and the neutron
Dalitz decay width is enhanced.
Since we aim at the range of the HADES experiments,

we do not go beyond W ≃ 1.55 GeV. The values of the
function Γeþe−NðWÞ, at W ¼ MR are given in Table IV.
From the table we can conclude that the results for proton
and neutron decays are very close, Γeþe−NðMRÞ ≃ 6–7 keV.
This result contrasts with what occurs in the radiative

decay, ΓγNðMRÞ, where the widths for the two isospin
channels differ much more.
In a model where we reduce the isoscalar component

Að0Þ by about 0.05, which as discussed in Sec. III E
[Að0Þ → Að0Þ − 0.05 ≃ 0.075] is still well within the
experimental limits, the results for Γeþe−NðWÞ are almost
indistinguishable in the two channels.
The timelike data about the neutron decays is very

important because they provide information about the
neutron structure which is not available at the moment
from spacelike experiments. For this reason pion-induced
reactions at HADES [6,7] are fundamental to pin down the
electromagnetic structure of the neutron and complement
the information from the spacelike region.
In Fig. 16, we compare the Nð1535Þ Dalitz widths with

estimates for other light mass resonances, based on the
covariant spectator quark model. We show the results for
the Δð1232Þ32

þ, where the pion cloud contributes with
about 45% to the transition form factors at the photon point
[3], and also the results for Nð1520Þ32

− [5].
Figure 16 shows that the Δð1232Þ32

þ dominates within
the range of W considered, although the Δð1232Þ Dalitz
decay at the pole is measured for smaller values of W.
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FIG. 14. Dilepton decay rates d
dqΓeþe−Nðq;WÞ for the cases W ¼ 1.2, 1.4 and 1.535 GeV. The upper limit in q is W −MN .

TABLE IV. Nð1535Þ → γN Dalitz decay widths, estimated by
the present model.

Γeþe−N (keV)

p 5.7
n 7.2
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FIG. 15. Dalitz decay widths as a function of W for the proton
and neutron.
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FIG. 16. Comparison between Dalitz decay widths Γeþe−NðWÞ
for different resonances. Models are from Refs. [3,5]. The
diamonds indicate the Dalitz decay widths at the physical point
(W ¼ MR).
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left: ∆(1232) Dalitz decay cross-sections from HADES [77]. See discussion in the main text.

case the functions are represented in terms of q2 = −Q2, in order to facilitate
the discussion in the timelike regime. The new parametrization improves the
previous one, because it clearly separates the contributions from the photon
coupling with the pion from the photon coupling with intermediate baryon
states (see Fig. 9).

The motivation to the use of the parametrization (16) is based on the
diagrammatic representation of Fig. 9, and in the results of the study of the
octet to decuplet transition from Ref. [32]. In that work a microscopic meson
cloud contribution based on the cloudy bag model [73] was used in combination
with the covariant spectator quark model for the quark core. It was found that
in the case of the γ∗N → ∆(1232) transition each diagram contribute with
about 50% to the pion cloud effect.

In the new representation only a part (50%) of the contribution is then
linked with the photon coupling with the pion, as expected in a realistic de-
scription. The second term, which describes the coupling with intermediate
baryons is now represented phenomenologically, using an effective generaliza-
tion of G2

D to the timelike region, where the pole q2 = Λ2
D is regularized [29,

30].

The present representation of Gπ
M is particularly useful for studies in

the timelike region, in particular to the study of the ∆(1232) Dalitz decay:
∆→ γ∗N → e+e−N , where the final state has a dilepton pair [30,74]. Those
processes have been studied at HADES [74,75,76,77]. This topic was discussed
also in the presentation of B. Ramstein [78].

In timelike region one can calculate the G∗
M form factor, which is complex,

in terms of the running mass W that can differ from the mass of the pole M∆.
The results of |G∗

M | for different values of W are presented in the left panel of
Fig. 10. For kinematic reason the functions are limited by q2 ≤ (W −M)2 [29,
30]. The model for |G∗

M | was used to estimate the∆(1232) Dalitz cross-sections
and it was compared with the results from HADES [77]. The results are pre-
sented in the right panel of Fig. 10. The covariant spectator quark model

(1232) Dalitz decay �

Dalitz decay branching ratio extracted 4.19 x 10-5�

proton-proton collisions @1.25 GeV

γ∗N → ∆: timelike region – ∆ Dalitz decay – PDG

HADES is planning to measure Dalitz decay widths of hyperons
Σ∗0 → e+e−Λ, Σ∗+ → e+e−Σ+, ...

HADES EPJA 57, 139 (2021); GR PRD 102, 054016 (2020)
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FIG. 2. (a) d�/dMe+e� for the ⇡�+CH2 reaction integrated
in the HADES acceptance over the missing mass range [900-
1030] MeV/c2. Full triangles: total yields, full squares: after
subtraction of the ⇡0 Dalitz decay contribution (⇡0[�e+e�]).
The curves display the simulations for point-like baryon Dalitz
decay (”QED reference”, orange dashed-dotted curve), ⇡0

Dalitz decay (black dotted curve) and the sum (black solid
curve). (b) d�/dMe+e� for the quasi-free ⇡�p! ne+e�

reaction integrated over the missing mass range [900-1030]
MeV/c2after normalisation by the number of e↵ective protons
and acceptance corrections. Gray triangles up (blue triangles
down): e+e� yields deduced from the ⇡�p ! ⇢n PWA con-
tribution [36] using VMD2 (VMD1). Orange dashed-dotted
curve: QED reference (d�/dMe+e�)QED, gray dashed area:
VMD2 model with d-wave contribution varied from 0 (full
curve) to 10% (dashed curve), blue colored area (cyan curve):
same for VMD1 models with constructive (incoherent) sum of
⇢ and � contributions, long dash-dot-dot-dashed blue curve:
⇢ contribution to the VMD1 model. Calculations using the
timelike Form-Factor model (red solid curve) and the La-
grangian model (green long dashed curve) are also shown. (c)
Ratios (d�/dMe+e�)/(d�/dMe+e�)QED. The same marker
and curve styles apply as in panel (b). Symbols with vertical
and horizontal bars show the data with total and systematic
point-to-point errors, respectively and curves display simula-
tions with absolute normalisation in all panels.

Our results are also compared to the microscopic calcu-
lation of [46] based on an e↵ective Lagrangian approach,
taking into account various resonant and non-resonant
amplitudes in a coherent way using the N?N⇢ couplings

derived from the PWA [36]. A salient feature of this
model is the application of the two-component VMD1
model to all baryon-photon couplings. Choosing a rel-
ative phase of 90� between the resonant � and ⇢ am-
plitudes, a good description of the e+e� production is
achieved, as shown by the green long dashed curve in
Figs. 2b and c. The calculation was performed for the free
⇡�p! ne+e� reaction which might explain the peak-like
structure at large invariant masses. One has however to
consider that these calculations have not yet been con-
fronted with the measured two-pion production. More-
over, this model accommodates a strong contribution of
non-resonant Born terms in the dilepton production, in
contrast to the PWA analysis of the ⇡�p ! n⇢ channel
[36], where the main contributions are due to N(1520)
and (to a smaller extent) to N(1535) excitation in the
s-channel.
Simulations based on the eTFF model [47, 48] for

these resonances also give a satisfactory description of
the data, which demonstrates that the dominant meson
cloud contribution is taken into account in a realistic
way. As the evolution of the e↵ective eTFF is mainly
driven by the pion electromagnetic form factor, this cal-
culation provides an independent VMD approach for the
⇡�p! ne+e� reaction.
The measured e+e� cross section for Me+e� ⇡ 500

MeV/c2 is more than two orders of magnitude larger than
the calculations of [51], which were based on a very low
o↵-shell ⇢ cross section and strong destructive interfer-
ences with o↵-shell ! production. The calculations of
[52], which were performed for

p
s larger than 1.6 GeV,

also predicted large negative interferences between ⇢ and
!, though with a larger ⇢ yield.
The ”QED reference” model was used to extrapolate

the experimental di↵erential cross section at small in-
variant masses (Me+e� < 100 MeV/c2). In this way, a
total cross section for the free ⇡�p! ne+e� reaction of
� = (2.97 ± 0.07data ± 0.21acc ± 0.31Zeff )µb can be de-
duced, where the errors are due to uncertainties of the
measurement, the acceptance correction and the e↵ective
number of protons, respectively. The ratio of the inte-
grated experimental and ”QED reference” cross sections,
which can be attributed to an e↵ective eTFF, amounts
to 1.35 ± 0.03 (data) ± 0.02 (acceptance).
Angular distributions. Further information on the

nature of the timelike electromagnetic transitions in the
⇡�p! ne+e� reaction can be obtained from the angu-
lar distributions. A convenient parameterization of the
di↵erential cross sections d4�/d⇥�⇤dMe+e�d cos⇥ d� /
|A|2 is provided by the density matrix formalism [46, 53,
54] with the relevant dependencies of the mod-squared
amplitude at given value of Me+e� and polar angle (⇥�⇤)
of the virtual photon in the center-of-mass frame:

|A|2 / 8k2
⇥
1� ⇢11 + (3⇢11 � 1) cos2 ⇥.

+
p
2Re⇢10 sin 2⇥ cos�+Re⇢1�1 sin

2 ⇥ cos 2�
⇤
. (3)

@1.49 GeV

Simulations based on the CST model 
(red line) for these resonances also give 
a satisfactory description of
the data.

Below 200 MeV/c2 , data agrees with a 
pointlike baryon-photon vertex (QED 
orange line) .

At larger invariant masses, data  is  
more than 5 times larger than the 
pointlike result, showing a strong effect 
of the transition form factor.



Extension to Strangeness in the timelike region

2

in Refs. [25–27].

II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2

4M2

B

.

In the one-photon-exchange approximation (equivalent
to the impulse approximation in spacelike) one can inter-
preted the e+e− → BB̄ transition as e+e− → γ∗ → BB̄,
and express the integrated cross section (in the e+e− rest
frame) as [5]

σBorn(q
2) =

4πα2βC

3q2

(

1 +
1

2τ

)

|G(q2)|2, (1)

where G(q2) is an effective form factors dependent on
the hyperon B, discussed next, α " 1/137 is the fine-
structure constant, β is a kinematic factor defined by

β =
√

1− 1
τ
and C a factor associated with the baryon.

The factor C is equal to 1 for neutral baryons and
represent the Sommerfeld-Gamow factor for charged
baryons: C = y

1−exp(−y) , with y = πα
β

2MB√
q2
, that

take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
study, at large q2 (τ % 1), one has C " 1.

The effective form factor is a combination of the elec-
tric and magnetic (square) form factors with magni-
tude [5]

|G(q2)|2 =

(

1 +
1

2τ

)

−1 [

|GM (q2)|2 +
1

2τ
|GE(q

2)|2
]

,

=
2τ |GM (q2)|2 + |GE(q2)|2

2τ + 1
. (2)

Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) " GSL
M (−q2), (3)

GE(q
2) " GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2

4M2

B

.

In the one-photon-exchange approximation (equivalent
to the impulse approximation in spacelike) one can inter-
preted the e+e− → BB̄ transition as e+e− → γ∗ → BB̄,
and express the integrated cross section (in the e+e− rest
frame) as [5]
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where G(q2) is an effective form factors dependent on
the hyperon B, discussed next, α " 1/137 is the fine-
structure constant, β is a kinematic factor defined by

β =
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1− 1
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and C a factor associated with the baryon.

The factor C is equal to 1 for neutral baryons and
represent the Sommerfeld-Gamow factor for charged
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β
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q2
, that

take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
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2)|2
]

,

=
2τ |GM (q2)|2 + |GE(q2)|2

2τ + 1
. (2)

Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) " GSL
M (−q2), (3)

GE(q
2) " GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) " GSL
M (−q2), (3)

GE(q
2) " GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2

4M2

B

.

In the one-photon-exchange approximation (equivalent
to the impulse approximation in spacelike) one can inter-
preted the e+e− → BB̄ transition as e+e− → γ∗ → BB̄,
and express the integrated cross section (in the e+e− rest
frame) as [5]

σBorn(q
2) =
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3q2

(

1 +
1
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)

|G(q2)|2, (1)

where G(q2) is an effective form factors dependent on
the hyperon B, discussed next, α " 1/137 is the fine-
structure constant, β is a kinematic factor defined by

β =
√

1− 1
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and C a factor associated with the baryon.

The factor C is equal to 1 for neutral baryons and
represent the Sommerfeld-Gamow factor for charged
baryons: C = y

1−exp(−y) , with y = πα
β

2MB√
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, that

take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
study, at large q2 (τ % 1), one has C " 1.

The effective form factor is a combination of the elec-
tric and magnetic (square) form factors with magni-
tude [5]
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,
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Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) " GSL
M (−q2), (3)

GE(q
2) " GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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With a CST phenomenological ansatz for the baryon wave functions we described

different excited stated of the nucleon, with a variety of spin and orbital motion.

1 Evidence of separation of partonic and hadronic 
(pion cloud) effects from the      (1232)

2 Made consistent with LQCD in the large pion mass regime, enabling extraction of
“pion cloud” effects indirectly from data.

3 Spacelike e.m. transition FFs for:  
N*(1440), N*(1520), N*(1535), …, baryon octet, etc.

4 Extension to timelike e.m. transition FFs and
predictions for dilepton mass spectrum and decay widths.

5 Descriptions consistent with experimental data at high Q2.

�

Summary


