Sound velocity beyond the High-Density Relativistic Limit from Lattice Simulation of Dense Two-Color QCD

Etsuko Itou (RIKEN/ Keio U. / Osaka U.)
Based on K.lida and EI, arXiv: 2207.01253

The 9th International Conference on Quarks and Nuclear Physics (QNP2022), 06/09/2022, Florida State University (online)
\[c_s^2/c^2 > 1/3 \] is found by Lattice Simulation in Dense Two-Color QCD

Etsuko Itou (RIKEN / Keio U. / Osaka U.)
Based on K.lida and EI, arXiv: 2207.01253

The 9th International Conference on Quarks and Nuclear Physics (QNP2022), 06/09/2022, Florida State University (online)
Introduction: finite-\(T\) transition

EoS and sound velocity at zero-\(\mu\)

Finite Temperature transition
(Nf=2+1 QCD)

EoS
\((p \text{ and } \varepsilon) \)

Sound velocity
\(c_s^2 = \frac{dp}{d\varepsilon} \)

©BNL/RHIC
Introduction: Today's talk
EoS and sound velocity at low-T and high-μ

EoS
\[p(\mu) \text{ vs } \varepsilon(\mu) \]

Sound velocity
\[c_s^2 = \frac{\partial p}{\partial \varepsilon} \]

Low-μ ($n_B \lesssim 2n_0$): Hadronic matter

High-density relativistic limit
\[\frac{c_s^2}{c^2} = \frac{1}{3} \]

High-μ ($5n_0 < n_B$): Quark matter

\[\rightarrow \text{pQCD (}50n_0 < n_B)\]
EoS, c_s and neutron star

Mass and radius of neutron star

Sound velocity $c_s^2 = \partial p / \partial \epsilon$

Mass-Radius of neutron star \Leftrightarrow EoS in dense QCD

Prediction by phenomenology and effective models

Sound velocity has a peak?

\[\frac{c_s^2}{c^2} \]

- Quark-hadron crossover picture consistent with observed neutron stars (M-R) suggests \(c_s^2 \) peaks at \(n_B = 1 - 10n_0 \)
 - Masuda, Hatsuda, Takatsuka (2013)
 - Baym, Hatsuda, Kojo (2018)

- Quarkyonic matter model
 \(c_s^2 \) peaks at \(n_B = 1 - 5n_0 \)
 - McLerran and Reddy (2019)

- Microscopic interpretation on the origin of the peak = quark saturation (color independent)
 - Kojo (2021), Kojo and Suenaga (2022)

Lattice study on 2color dense QCD
2color QCD \approx 3color QCD

- 2color QCD reduced model with color d.o.f. in real QCD

 - Properties of 3color QCD at $\mu = 0$
 - asymptotic freedom
 - finite T transition (chiral/confinement)
 - pseudo-scalar meson is lightest (pion) cf.) QCD inequality
 - EoS(energy, pressure)

 - Qualitatively, 2color QCD has the same ones

 - Quantitatively, EoS shows very similar at least quenched QCD case

In 2color QCD at $\mu \neq 0$, the sign problem is absent. Find qualitative property of real dense 3color QCD
2color QCD phase diagram

(1) K.lida, K.Ishiguro, El, arXiv: 2111.13067
(2) K.lida, El, T.-G. Lee: PTEP2021(2021) 1, 013B0
(4) T.Furusawa, Y.Tanizaki, El: PRResearch 2(2020)033253
Phase diagram of 2color QCD

This work

<table>
<thead>
<tr>
<th></th>
<th>Hadronic</th>
<th>Hadronic-matter</th>
<th>QGP</th>
<th>Superfluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle</td>
<td>L</td>
<td>\rangle$</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>$\langle qq \rangle$</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>non-zero</td>
</tr>
<tr>
<td>$\langle n_q \rangle$</td>
<td>non-zero</td>
<td>non-zero</td>
<td>non-zero</td>
<td>$n_q/n_q^{\text{tree}} \approx 1$</td>
</tr>
</tbody>
</table>

Scaling law of order param. is consistent with ChPT.

Kogut et al., NPB 582 (2000) 477
Phase diagram of 2color QCD

This work

In high-μ, $\langle n_q \rangle \approx n_q^{\text{tree}}$

number density of free particle

BEC-BCS crossover

<table>
<thead>
<tr>
<th></th>
<th>Hadronic</th>
<th>Hadronic-matter</th>
<th>QGP</th>
<th>Superfluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle</td>
<td>L</td>
<td>\rangle$</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>$\langle qq \rangle$</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>non-zero</td>
</tr>
<tr>
<td>$\langle n_q \rangle$</td>
<td>non-zero</td>
<td>non-zero</td>
<td>non-zero</td>
<td>$n_q/n_q^{\text{tree}} \approx 1$</td>
</tr>
</tbody>
</table>
Equation of state

Equation of state

- Fixed scale approach ($\mu \neq 0$ version)
 - beta=0.80 (Iwasaki gauge), 16^4 lattice
 - T=79MeV, j->0 extrapolation is taken

- trace anomaly: $\epsilon - 3p = \frac{1}{N_s^3} \left(a \frac{d\beta}{da} \left. LCP \langle \frac{\partial S}{\partial \beta} \rangle_{\text{sub.}} \right|_{\text{LCP}} + a \frac{d\kappa}{da} \left. LCP \langle \frac{\partial S}{\partial \kappa} \rangle_{\text{sub.}} \right|_{\text{LCP}} + a \left. \frac{\partial j}{\partial a} \right|_{\text{LCP}} \right)
 - No renormalization for μ
 - $\langle \cdot \rangle_{\text{sub.}} = \langle \cdot \rangle_{\mu} - \langle \cdot \rangle_{\mu=0}$
 - Zero at $j \to 0$

- pressure: $p(\mu) = \int_{\mu_0}^{\mu} n_q(\mu') d\mu'$

EoS in dense 2color QCD
Hands et al. (2006)
Hands et al. (2012), T~47MeV (coarse lattice)
Astrakhantsev et al. (2020), T~140MeV
Equation of state

- Fixed scale approach ($\mu \neq 0$ version)
 beta=0.80 (Iwasaki gauge), 16^4 lattice
 T=79MeV, j->0 extrapolation is taken

- trace anomaly: $\epsilon - 3p = \frac{1}{N_s^3} \left(a \frac{d\beta}{da} \langle \frac{\partial S}{\partial \beta} \rangle_{sub.} + a \frac{dk}{da} \langle \frac{\partial S}{\partial k} \rangle_{sub.} + a \frac{dj}{da} \langle \frac{\partial S}{\partial j} \rangle_{sub.} \right) - 3p$
 Zero at $j \to 0$

- pressure: $p(\mu) = \int_{\mu_0}^{\mu} n_q(\mu') d\mu'$

Technical steps

1) Measure the gauge action and chiral cond.
2) Calculate the beta fn. at $\mu = 0$
3) Numerical integration of n_q
Equation of state

- Fixed scale approach ($\mu \neq 0$ version)
 - beta=0.80 (Iwasaki gauge), 16^4 lattice
 - $T=79\text{MeV}$, $j \to 0$ extrapolation is taken

- trace anomaly: $\epsilon - 3p = \frac{1}{N_s^3} \left(a \frac{d \beta}{d a} \langle \frac{\partial S}{\partial \beta} \rangle_{\text{sub.}} + a \frac{d \kappa}{d a} \langle \frac{\partial S}{\partial \kappa} \rangle_{\text{sub.}} + a \frac{\partial j}{d a} \langle \frac{\partial S}{\partial j} \rangle \right)$
 - Zero at $j \to 0$

- pressure: $p(\mu) = \int_{\mu_o}^{\mu} n_q(\mu') d\mu'$

Nonperturbative beta-fn.

- $a \frac{d \beta}{d a} = -0.3521$, $a \frac{d \kappa}{d a} = 0.02817$

K.lida, EI, T.-G. Lee: PTEP 2021 (2021) 1, 013B0
Trace anomaly and pressure

- Sum of trace anomaly, \((e - 3p)_g + (e - 3p)_f\)
 - zero in Hadronic phase
 - positive in BEC phase
 - positive -> negative in BCS phase
 - Finally, fermions give the larger contribution

- Pressure increase monotonically
 - In high density, it approaches
 \[p_{SB}/\mu^4 = N_cN_f/(12\pi^2) \approx 0.03 \]
P and e as a function of μ

(Normalized by $1/\mu_c^4$ to be dim-less)

- P is zero in Hadronic phase since $n_q = 0$
- e is also zero in Hadronic phase by the cancelation between $(e - 3p)_g$ and $(e - 3p)_f$

From these data, the sound velocity is obtained

$$c_s^2/c^2 = \frac{\Delta p}{\Delta e} = \frac{p(\mu + \Delta \mu) - p(\mu - \Delta \mu)}{e(\mu + \Delta \mu) - e(\mu - \Delta \mu)}$$
Sound velocity \(\left(\frac{c_s^2}{c^2} = \frac{\Delta p}{\Delta e} \right) \)

Chiral Perturbation Theory (ChPT)

\[
\frac{c_s^2}{c^2} = \frac{1 - \mu_c^4/\mu^4}{1 + 3\mu_c^4/\mu^4} : \text{no free parameter!!}
\]

Son and Stephanov (2001) : 3color QCD with isospin \(\mu \)
Hands, Kim, Slullerud (2006) : 2color QCD with real \(\mu \)

- In BEC phase, our result is consistent with ChPT.
- \(\frac{c_s^2}{c^2} \) exceeds the relativistic limit
- In high-density, it peaks around \(\mu \approx m_{PS} \).

"Stiffen" and then "soften" picture as density increases
Sound velocity and phase transition

Finite Temperature transition
(Nf=2+1 QCD)

Finite Density transition
(Nf=2 2color QCD)

- Minimum around Tc
- Monotonically increases to $c_s^2/c^2 = 1/3$
- $c_s^2/c^2 > 1/3$
- previously unknown from any lattice calculations for QCD-like theories.

Borsanyi et al. (2013)
lida and El arXiv: 2207.01253

HotQCD (2014)
Further high density?

Kojo, Baym, Hatsuda (2021)

pQCD prediction
(Ultra high-density regime)

- Upper bound of chemical potential in lattice simulation comes from $a\mu \ll 1$
 (Here, we take $a\mu \leq 0.8$)
- To study high-density, the lighter mass / finer lattice spacing are needed

\[c_s^2/c^2 = \frac{1 - 5\beta_0\alpha_s^2/(48\pi^2)}{3} \]
Summary and future work

• In BEC phase, our result is consistent with ChPT. Sound velocity exceeds the relativistic limit and has a peak after BEC-BCS crossover cf.) cond-mat model study also find it
 Tajima and Liang (2022)

• Find a mechanism of a peak structure
 - quark saturation? (Kojo, Suenaga), strong coupling with trace anomaly? (McLerran, Fukushima et al.), others?
 - attractive or repulsive force between hadrons?
 => extended HAL QCD method in finite density
 - independent of the color dof?

• This finding might have a possible relevance to the EoS of neutron star matter revealed by recent measurements of neutron star masses and radii.
Backup
Two problems at low-T high-μ QCD

- Sign problem (at $\mu \neq 0$ $S_E[U]$ takes complex value)

 Reduce the color dof, 2color QCD
 quarks becomes pseudo-real reps.
 The sign problem is absent from 2color QCD with even Nf

- Onset problem in low-T, high-μ (e.g. $\mu_q > m_\pi/2, \ m_N/3$),

 It comes from the phase transition to superfluid phase (SSB of baryon sym.)

 Add an explicit breaking term of the sym., then take $j \rightarrow 0$ limit

 $S_F^{cont.} = \int d^4x \bar{\psi}(x)(\gamma_{\mu}D_{\mu} + m)\psi(x) + \mu \hat{N} - \frac{j}{2}(\bar{\psi}_1 K \psi_2 - \psi_2^T K \psi_1)$

 Number op. diquark source

 HMC simulations for whole $T-\mu$ regime are doable!
 (j-\rightarrow0 extrapolation is taken in all plots today)
In massive fermion theory, the trace anomaly does not vanish because the mass term breaks the scale invariance. The mass term will give a negative contribution, so that we expect \(e/\mu^4 < e_{SB}/\mu^4 = N_c N_f/(4\pi^2) \).
Scheme dependence of pressure

\[\frac{p}{p_{SB}}(\mu) = \frac{\int_{\mu_0}^{\mu} n_q(\mu') d\mu'}{\int_{\mu_0}^{\mu} n_{SB}^{\text{cont}}(\mu') d\mu'}; \quad (28) \]

\[\frac{p}{p_{SB}}(\mu) = \frac{\int_{\mu_0}^{\mu} n_{SB}^{\text{cont}}(\mu') n_q(\mu') d\mu'}{\int_{\mu_0}^{\mu} n_{SB}^{\text{cont}}(\mu') d\mu'}; \quad (29) \]
Sound velocity (ratio $\Delta p/\Delta e$) vs energy

\[\frac{c_s^2}{c^2} \]

relativistic limit

\[p/e \]

\[e/\mu_c \]

\[e/\mu_c \]
Holography bound?

A bound on the speed of sound from holography

Aleksey Cheremushkin and Thomas D. Cohen
Center for Fundamental Physics, Department of Physics,
University of Maryland, College Park, MD 20742-4111

Abhinav Nelor
Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

We show that the squared speed of sound v_s^2 is bounded from above at high temperatures by the conformal value of $1/3$ in a class of strongly coupled four-dimensional field theories, given some mild technical assumptions. This class consists of field theories that have gravity duals sourced by a single scalar field. There are no known examples to date of field theories with gravity duals for which v_s^2 exceeds $1/3$ in energetically favored configurations. We conjecture that $v_s^2 = 1$ is an upper bound for a broad class of four-dimensional theories.

$\frac{c_s^2}{c^2} \leq \frac{1}{3}$ at high T

Counterexample for $N=4$ SYM at finite density
Phase diagram
Current status on 2color QCD phase diagram

At least three independent group studying the phase diagram

(1) S. Hands group: Wilson-Plaquette gauge + Wilson fermion
(2) Russian group: tree level improved Symanzik gauge + rooted staggered fermion
(3) Our group: Iwasaki gauge + Wilson fermion, Tc=200 MeV to fix the scale

<table>
<thead>
<tr>
<th>Temperature (MeV)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>158</td>
<td>Deconfined, hadron -> QGP phase transition occurs</td>
</tr>
<tr>
<td>130</td>
<td>Deconfined? QGP phase?, 2019</td>
</tr>
<tr>
<td>140</td>
<td>Deconfined in high mu, <qq> is not zero, 2017, 2018, 2020</td>
</tr>
<tr>
<td>93</td>
<td>Deconfined in high mu ?, also <qq> is not zero?, 2017</td>
</tr>
<tr>
<td>87</td>
<td>Confined in 2019</td>
</tr>
<tr>
<td>79</td>
<td>Confined even in high mu</td>
</tr>
<tr>
<td>55</td>
<td>Confined in high mu, 2016</td>
</tr>
<tr>
<td>47</td>
<td>Deconfined coarse lattice in 2012, but confined in 2019</td>
</tr>
<tr>
<td>45</td>
<td>Confined in 2019</td>
</tr>
</tbody>
</table>

- Even $T \approx 100\text{MeV}$ and $\mu/m_{PS} = 0.5$, superfluid phase emerges
- 2color QCD phase diagram has been determined by independent works!
Scale setting at $\mu = 0$

- T_c at $\mu = 0$ from chiral susceptibility

Scale setting at \(\mu = 0 \)

- Tc at \(\mu = 0 \) from chiral susceptibility
- Assume Tc=200MeV
 Tc is realize Nt=10, \(\beta = 0.95 \) (a=0.1[fm])
- Find relationship between \(\beta \) (lattice bare coupling) and \(a \) (lattice spacing)
 In finite density simulation, a=0.1658[fm]
Order parameters in $j=0$ limit

At $T=0.39T_c$, we find the BCS with confined phase until $\mu \lesssim 1152\text{MeV}$.

Scaling law of order param.
is consistent with ChPT.
Ref: Kogut, Stephanov, Toublan, Verbaarschot, Zhitnitsky
NPB 582 (2000) 477
BEC/BCS crossover

![Graph](image)

BEC phase

BCS phase

Distance between quarks $\gg \Delta^{-1}$

Quarks behave free particles

Distance between quarks $\ll \Delta^{-1}$

Number density of free particle

$$n_q^{\text{tree}}(\mu) = \frac{4N_cN_f}{N_s^3N_T} \sum_k \frac{i \sin \tilde{k}_0 [\sum_i \cos k_i - \frac{1}{2\pi}]}{[\frac{1}{2\pi} - \sum_\nu \cos \tilde{k}_\nu]^2 + \sum_\nu \sin^2 \tilde{k}_\nu}$$
J->0 extrapolation
Diquark condensate has a strong j dependence

Figure 5. The j-dependence of the diquark condensate for several μ/m_{PS}.
J->0 extrapolation

Chiral condensate and n_q have a mild j-dependence