

QNP2022 - The 9th International Conference on Quarks and Nuclear Physics

Baryon in Charmonium decays at BESIII

Rong-Gang Ping (For BESIII Collaboration) Institute of High Energy Physics, CAS

<u>QNP2022 - The 9th International Conference on Quarks and</u> <u>Nuclear Physics</u>

Baryon spectroscopy

Issues in baryon spectroscopy:

- N^* missing states
- Roper resonance $N_{1/2^+}$ (1440)
- $N_{1/2^-}(1535)$
- Λ_{1/2}-(1405)

```
.....
```

Bayon excitation in J/ψ and ψ' decays

Candidate produced in	10 billion J/ψ and	3 billion $\psi(2S)$
------------------------------	-------------------------	-----------------------------

X	$N(J/\psi ightarrow X) imes 10^6$	$N(\psi' ightarrow X) imes 10^6$
$N\overline{N}\pi$	97	2.28
$p\bar{p}\pi^+\pi^-$	60	1.8
$N\overline{N}\eta$	41.8	0.17
$\Lambda\overline{\Lambda}\eta$	1.6	0.075
$pK^{-}\overline{\Lambda}$ + c. c.	8.6	0.3
$pK^-\overline{\Sigma}{}^0$	2.9	0.051
$\Sigma\overline{\Lambda}\pi$	8.3	0.462

Big challenge for PWA Software : Feynman Diagram Calculation (FDC)

Λ^* and N^* in $e^+e^- \rightarrow pK^-\overline{\Lambda} + c.c.$ at 4.178 GeV

- Using continuum data of 3189/pb, reconstruct decay with $\Lambda(\overline{\Lambda}) \rightarrow p\pi^{-}(\overline{p}\pi^{+})$.
- Partial wave analysis performed to 3833 candidates

$p\overline{\Lambda}$ threshold enhancement *X*(2075)

(GeV/c²)

 $M_{p\bar{\lambda}}$

2 2.25

2.5 2.75

3 3.25

 $M_{p\overline{A}}$ (GeV/c²)

Motivation

- Observed at BESII in 2004
- Similar structure was seen in several B meson and charmonium decays
- Investigated theoretically under scenario of <u>quark model</u>, <u>FSI</u> and <u>chiral effective theory</u>

Λ^* and N^* in $e^+e^- \rightarrow pK^-\overline{\Lambda} + c.c.$ at 4.178 GeV

Resonance	$M (\text{MeV}/c^2)$	Γ(MeV)	Significance	FF(%)
X(2075)	2122 ± 7	144 ± 12	>20	28.8 ± 2.3
K(1980)	1995	349	8.2	29.7 ± 2.6
K(2045)	2048	199	6.7	6.1 ± 2.0
K(2250)	2247	180	8.8	17.7 ± 1.4
N(1720)	1720	250	5.8	4.0 ± 0.8
N(2570)	2570	250	6.1	5.2 ± 1.0
Λ(1520)	1519	16	7.8	1.2 ± 0.4
Λ(1890)	1890	120	5.2	3.0 ± 0.5
Λ(2350)	2350	150	5.0	2.1 ± 0.7

- **BESIII** preliminary:
- N* contribution up to ~9%
- Λ^* up to ~6%
- dominant K* contribution:
 ~80%

J ^P	$\sqrt{\Delta(-2\ln L)}$
1+	
0-	9.3
1-	8.1
2+	9.8
2-	5.7

- Statistical significance of $X(2075) > 20\sigma$
- *X*(2075) described with a Breit-Wigner function of massdependent width

 $M_{pole} = 2085 \pm 6 \pm 6 \text{ MeV}/c^2$; $\Gamma_{pole} = 62 \pm 10 \pm 16 \text{ MeV}$

• J^P is determined to be 1^+ (> 5 σ), P-wave structure, with significance >5 σ over other J^P numbers.

The Born cross sections of $e^+e^- \rightarrow pK^-\overline{\Lambda} + c.c.$

- Born cross sections of $e^+e^- \rightarrow pK^-\overline{\Lambda} + c.c.$ are measured at 37 energy points within $\sqrt{s}=4.009$ -4.946 GeV with $\Sigma \mathcal{L} = 21.7 \ fb^{-1}$
- Several well-established charmonium-(like) states are checked, none of which yields significance greater than 1.8σ .

Resonance	χ^2/ndf	Significance
Continuum only	60.96/35	
$\psi(4160)$	56.73/33	1.6
$\psi(4230)$	60.96/33	<0.1
$\psi(4260)$	60.25/33	0.4
$\psi(4360)$	55.72/33	1.8
$\psi(4415)$	55.97/33	1.7
$\psi(4660)$	60.96/33	< 0.1

N^* and Λ^* in $\chi_{cJ} \to nK_S^0 \overline{\Lambda} + c.c.$

- Using hadronic decays to test χ_{cI} color-octet decay mechanisms
- Search for threshold enhancement of baryon pairs, e.g. $J/\psi \rightarrow \gamma p \bar{p}$ • 448 million $\psi(3686)$ decays
- reconstruct $\chi_{cJ} \rightarrow pK_S^0\overline{\Lambda} + c.c.$ Via $\psi(3686) \rightarrow \gamma \chi_{cJ}$ decays, using

$\Lambda^* \text{ in } \chi_{cJ} \to \Lambda \overline{\Lambda} \eta \text{ decays}$

- A strong threshold enhancement observed in $e^+e^- \rightarrow \phi \Lambda \overline{\Lambda}$,
- $J^{PC} = 0^{-+}/0^{++}$ rejected with significance $3 > 7\sigma$, veto $\eta(2225) \rightarrow \Lambda \overline{\Lambda}$
- Using 448 million decays, search for $\Lambda\overline{\Lambda}$ enhancement $\chi_{cJ} \rightarrow \Lambda\overline{\Lambda}\eta$
- Reconstruct decay using $\psi(3686) \rightarrow \gamma \chi_{cJ}$, and $\Lambda(\overline{\Lambda}) \rightarrow p\pi^{-}(\bar{p}\pi^{+}), \eta \rightarrow \gamma \gamma$

Signal yields: $\chi_{c0}: 66.9 \pm 8.8, \chi_{c1}: 21.3 \pm 5.0$ $\chi_{c2}: 31.6 \pm 6.2$ $\mathcal{B}(\chi_{c0} \to \Lambda \bar{\Lambda} \eta) = (2.31 \pm 0.30 \pm 0.21) \times 10^{-4}$ $\mathcal{B}(\chi_{c1} \to \Lambda \bar{\Lambda} \eta) = (5.86 \pm 1.38 \pm 0.68) \times 10^{-5}$ $\mathcal{B}(\chi_{c2} \to \Lambda \bar{\Lambda} \eta) = (1.05 \pm 0.21 \pm 0.15) \times 10^{-4}$

 Λ^* in $\chi_{cI} \rightarrow \Lambda \Lambda \eta$ decays

Evidence for

- $\Lambda\overline{\Lambda}$ mass threshold enhancement
- $\Lambda(1890)\frac{3}{2}^{-} \Lambda(2100)\frac{7}{2}^{-}$, $\Lambda(2110)\frac{5}{2}^{+}$ may contribute to $\Lambda\eta$ ($\overline{\Lambda}\eta$) spectrum
- More data is need to do PWA

Evidence for $\Lambda^* \to \Lambda \omega$ in $\psi(3686) \to \Lambda \overline{\Lambda} \omega$

- Close to $\Lambda\omega$ mass threshold, two Λ^* states observed decays to $\Lambda\omega$, e.g. $\Lambda(2100) 7/2^-, \Lambda(2110) 5/2^+$.
- Using 448 million $\psi(3686)$ decays, and reconstruct decay with $\Lambda(\overline{\Lambda}) \rightarrow p\pi^{-}(\overline{p}\pi^{+})$, $\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$, $\pi^{0} \rightarrow \gamma\gamma$.

 $Br(\psi(3686) \rightarrow \Lambda \overline{\Lambda} \omega) = (3.30 \pm 0.34 \pm 0.29) \times 10^{-5}$

Evidence for $\Lambda^* \to \Lambda \omega$ in $\psi(3686) \to \Lambda \overline{\Lambda} \omega$

BESIII, arXiv: 2207.11666

- Dimensional fit to Dalitz plot with *S*-wave Breit-Wigner function yields
 - $M = 2.001 \pm 0.007_{stat}$ GeV, $\Gamma = 0.036 \pm 0.014$ GeV. Significance ~ 3.1 σ .
- $Br(\psi(3686) \rightarrow \Lambda\Lambda^* + c.c. \rightarrow \Lambda\overline{\Lambda}\omega) < 1.40 \times 10^{-5}$ @ 90% C.L.
- More events need to resolve this structure.

$\Lambda(1670) \rightarrow \Lambda \eta$ in $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \eta$

- Using 448 million $\psi(3686)$ decays, reconstruct decay using $\Lambda(\overline{\Lambda}) \rightarrow p\pi^{-}(\bar{p}\pi^{+})$ and $\eta \rightarrow \gamma\gamma$.
- Partial wave analysis performed to 218 ± 17 events yields $M = (1672 \pm 5 + 6)$ MeV, $\Gamma = (38 \pm 10 \pm 19)$ MeV $Br(\psi(3686) \rightarrow \Lambda(1670)\overline{\Lambda} + c.c. \rightarrow \Lambda\overline{\Lambda}\eta) = (1.29 \pm 0.31 \pm 0.62) \times 10^{-5}$

BESIII, arXiv:2207.14350

Evidence of decay $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \pi^0$

• Using 448 million $\psi(3686)$ decays, reconstruct decay using $\Lambda(\overline{\Lambda}) \rightarrow p\pi^{-}(\overline{p}\pi^{+})$ and $\pi^{0} \rightarrow \gamma\gamma$.

 $Br(\psi(3686) \rightarrow \Lambda \overline{\Lambda} \pi^0) < 2.47 \times 10^{-6}$ at 90% C.L

BESIII, arXiv:2207.14350

Summary

- charmonium baryonic decays at BESIII provide a huge samples to study baryon spectrum.
- Continuum data can be used to search for high excited baryon sates.
- PWA using 10 billion J/ψ , 3 billion $\psi(3686)$ ongoing