

Hypertriton lifetime and binding energy measurement with ALICE

Stefania Bufalino on behalf of the ALICE Collaboration Politecnico and INFN Torino (Italy)

The hypertriton $({}^{3}_{\Lambda}H)$ in a nutshell

ALICE

- Lightest known hypernucleus
 - \circ $\,$ bound state of a neutron, a proton and a Λ
 - discovered in early 50s by M. Danysz and J. Pniewski¹
- ³_AH approximated as a bound state of a deuteron and a A with an expected radius² of ~ 10 fm
 two-body halo nucleus
- ${}^{3}_{\Lambda}H$ lifetime and B_{Λ} reflect its structure
 - most of the theoretical models assume $B_{\Lambda} \approx 130 \text{ keV}$ and predict lifetime close to the free Λ one
 - latest models based on EFT^{3,4} give lifetime predictions as a function of B_{Λ}

- ² Hildenbrand F. et al., Phys. Rev. C, 100(3), 034002 (2019)
- ³ Hildenbrand F. et al., *Physical Review C*, vol. 102, no. 6 (2020)
- ⁴ Pérez-Obiol A., *Physics Letters B*, vol. 811 (2020)

The hypertriton at the LHC

- Unique probe for understanding the Λ -nucleus interaction
 - strong implications for astro-nuclear physics
 - hyperons expected to be produced in the inner core of neutron stars¹
- Strangeness in high-density nuclear matter
 - hadronic phase of a heavy-ion collision
 - two classes of models for comparison: thermal (SHM)² and coalescence³ predictions

³ Sun. et al., *Phys. Lett. B*, 792, 132-137, (2019)

The hypertriton in ALICE

- Recent results in heavy-ion collisions suggest that ³^AH could be more compact than expected ^{1, 2}
 - precise measurements required to shed light on the ³^AH structure
- loosely bound nature of ³_AH has strong implications for its production mechanism
 - SHM and coalescence predictions well separated at low charged-particle multiplicity density

¹ STAR, Phys. Rev. C 97, 5, 054909 (2018) ² STAR, Nature Physics 16, 409-412 (2020)

The hypertriton in ALICE

- Recent results in heavy-ion collisions suggest that ³^AH could be more compact than expected ^{1, 2}
 - precise measurements required to shed light on the ³^AH structure
- loosely bound nature of ³_AH has strong implications for its production mechanism
 - SHM and coalescence predictions well separated at low charged-particle multiplicity density
- ³_AH production in pp and p-Pb is a key measurement to understand the nuclear production mechanism in hot and dense matter

¹ STAR, Phys. Rev. C 97, 5, 054909 (2018) ² STAR, Nature Physics 16, 409-412 (2020)

 We can tag the decay by identifing the hypertriton daughter particles (³He and π⁻) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus

³_AH candidate: ³He + π ⁻ pairs (and related charge conjugated states)

6

• We can tag the decay by identifing the hypertriton daughter particles (³He and π^{-}) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus

 We can tag the decay by identifing the hypertriton daughter particles (³He and π⁻) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus

• We can tag the decay by identifing the hypertriton daughter particles (³He and π^{-}) exploiting the excellent particle identification (PID) capabilities of the ALICE apparatus

The hypertriton in large systems

- ³_ΛH candidate: ³He + π⁻ pairs (and related charge conjugated states)
- Secondary vertex reconstruction
 - matching of ³He + π⁻ tracks coming from a common vertex
- Huge combinatorial background
 - machine Learning technique adopted to enhance the signal significance

The hypertriton in large systems

- ³_ΛH candidate: ³He + π⁻ pairs (and related charge conjugated states)
- Secondary vertex reconstruction
 - matching of ³He + π⁻ tracks coming from a common vertex
- Huge combinatorial background
 - machine Learning technique adopted to enhance the signal significance
 - Lifetime value from the fit
 - Statistical uncertainty ~ 6%
 - Systematic uncertainty ~ 7%

QNP2022 – 5-9 September

Corrected ct spectrum fitted with an exponential function

The hypertriton lifetime

Most precise measurement of the lifetime ever done so far

- Compatible with latest **STAR** measurement
- Theoretical approaches which predict a lifetime close to the free Λ one are favoured
 - strong hint that hypertriton is weakly bound
 - \circ B_{Λ} is still needed to solve the puzzle

The hypertriton mass

ALI-PREL-486366

- Same signal extraction technique and *c*t bins used for the lifetime
- precise mass measurement needed to obtain B_{Λ}
- Extremely precise measurement
 - 0.0016% stat.
- Systematic uncertainty of ~100 keV

The hypertriton B_{Λ}

ALI-PREL-486370

• B_{Λ} is derived from the mass measurement

 $B_{\Lambda}=M_{\Lambda}+M_{
m d}-M_{_{\Lambda}^3{
m H}}$

- Weakly bound nature of ³_AH is confirmed by the latest ALICE measurement
 - B_{Λ} compatible with zero
 - in agreement within 1σ with Dalitz and χ EFT based predictions
 - fully consistent with the lifetime measurement according to recent theoretical calculations^{1,2}

 ¹ Hildenbrand F. et al., *Physical Review C*, vol. 102, no. 6, Dec. 2020
 ² Pérez-Obiol A., *Physics Letters B*, vol. 811, Dec. 2020

Stefania Bufalino

 \bullet

QNP2022 – 5-9 September

during the LHC Run 2 trigger on high multiplicity events + topological cuts on triggered events to

collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected

pp collisions at $\sqrt{s} = 13$ TeV and p-Pb

The hypertriton in small systems

- select the 3 _AH
- Machine learning techniques used for the signal extraction in p-Pb
- Significance > 4σ both in pp and p-Pb collisions

$^{3}\Lambda$ H / Λ in pp and p-Pb collisions

- large separation between production models
- measurements in good agreement with 2-body coalescence ²
- SHM¹ does not catch the results for small collision systems:
 - configuration with $V_{\rm C} = 3 dV/dy$ is excluded at level of more than 6σ

Vovchenko, et al., *Phys. Lett.*, *B785*, *171-174*, (2018)
 Sun. et al., *Phys. Lett. B*, *792*, *132-137*, (2019)

S_3 in pp and p-Pb collisions

S₃: strangeness population factor

 $(^3_{\Lambda}\mathrm{H}/^3\mathrm{He})/(\Lambda/\mathrm{p})$

- S_3 in small systems:
 - agreement with the measurement of the ³_AH / A ratio but with a lower sensitivity

Vovchenko, et al., Phys. Lett., B785, 171-174, (2018)
 Sun. et al., Phys. Lett. B, 792, 132-137, (2019)

QNP2022 – 5-9 September

Stefania Bufalino

S_3 in pp and p-Pb collisions

S₃: strangeness population factor

 $(^3_{\Lambda}\mathrm{H}/^3\mathrm{He})/(\Lambda/\mathrm{p})$

- S_3 in small systems:
 - agreement with the measurement of the ${}^{3}{}_{\Lambda}H / \Lambda$ ratio but with a lower sensitivity
 - Run 3 data will be crucial to understand the production mechanism of hypernuclei and explore the multiplicity dependence of S_3

Summary and perspectives

- In the last decade all the hypertriton measurements come from heavy ion collisions
 - precise measurements of lifetime and B_{Λ} in Pb-Pb collisions confirm the weakly bound nature of ${}^{3}_{\Lambda}H$
 - first measurement of ³^AH production in pp and p-Pb collisions thanks to the ML approach
 - Measurement in small colliding systems are interesting to distinguish with high significance between the two nucleosynthesis mechanisms
 - More statistics will be crucial to deepen our knowledge in this field

Stay tuned for the ongoing LHC Run 3!