Status of Hadronic Molecules

Feng-Kun Guo

Institute of Theoretical Physics, Chinese Academy of Sciences
06 Sept. 2022

QNP2022 - The 9th International Conference on Quarks and Nuclear Physics

Charmonium-like structures

Hadronic molecules

- Masses of excited hadrons:
$>$ Radial excitations?
$>$ Excitation of light quark-antiquark pairs?
$>$ Hadron-hadron pairs? In the form of hadronic molecules
- Indication from large N_{c} analysis: $\frac{V_{q q[3]}}{V_{q \bar{q}[1]}}=\frac{1}{N_{c}-1} \quad$ Lucha et al., PPNP 120 (2021) 103867
- Indication from functional method (DS and BS equations) Eichmann et al., 2008.10240 See also the talk by Eichmann
- Implication of confinement (large-size systems in favor of color-singlet clusters)?
- Experimental evidence is accumulating
- Hadronic molecules: dominant component is a composite system of 2 or more hadrons; extended object
> Compositeness: well-defined for S-wave loosely bound state; can be expressed in terms of low-energy observables
S. Weinberg (1965); V. Baru et al. (2004); T. Hyodo et al. (2012); F. Aceti, E. Oset (2012); Z.-H. Guo, J. Oller (2016); I. Matuschek et al. (2021); Y. Li et al. (2022); J. Song et al. (2022); M. Albaladejo, J. Nieves (2022) ... Talk by V. Baru

Hadronic molecules

- Compositeness for S-wave shallow bound state as derived in Weinberg's paper, X_{W}, expressed in terms of scattering length and effective range

$$
a=-\frac{2 x_{W}}{1+X_{W}} R+O\left(m_{\pi}^{-1}\right), \quad r=-\frac{1-X_{W}}{X_{W}} R+O\left(m_{\pi}^{-1}\right) \quad R \equiv \frac{1}{\sqrt{2 \mu\left|E_{B}\right|}}
$$

- Applied to the deuteron case
Binding energy

$$
\left(E_{B}=-2.22 \mathrm{MeV}, R=4.31 \mathrm{fm}, a=-5.42 \mathrm{fm}, r=1.77 \mathrm{fm}\right), X_{W}=1.68>1
$$

$$
\text { Inconsistency already pointed out in I. Matuschek et al., EPJA57, } 101 \text { (2021); see V. Baru's talk }
$$

- Assumptions used in the derivations
\square Neglecting the non-pole term from the Low equation
\square Approximating the form factor by a constant

$$
T_{p, k}=V_{p, k}+\frac{g(p) g^{*}(k)}{h_{k}-E_{B}}+\int_{0}^{\infty} \frac{q^{2} d q}{(2 \pi)^{3}} \frac{T_{p, q} T_{k, q}^{*}}{h_{k}+i \varepsilon-h_{q}} \quad \text { w/ } h_{k} \equiv k^{2} /(2 \mu)
$$

- New expression dropping the $2^{\text {nd }}$ assumption

$$
X=1-\exp \left(\frac{1}{\pi} \int_{0}^{\infty} d E \frac{\delta_{B}(E)}{E-E_{B}}\right) \in[0,1] \quad \delta_{B} \approx \text { phase shift }
$$

- Separable ansatz \Rightarrow closed form of the form factor

$$
g^{2}(p)=\frac{8 \pi^{2}}{\mu^{2} R} \times \begin{cases}X_{W}+\mathcal{O}\left(p^{4}\right) & \text { for } a \in[-R, 0] \& r \leq 0 \quad \text { constant } \\ \frac{a^{2}}{R^{2}} \frac{1}{1+(a+R)^{2} p^{2}}+\mathcal{O}\left(p^{4}\right) & \text { for } a<-R \& r>0\end{cases}
$$

Other talks on hadronic molecules

Speakers	Topics
R. Molina	Exotic flavor states in the hidden-gauge formalism (plenary)
M. Albaladejo	Multiplets of $Z_{c s}(3985)$ and $X(3960)$ states
E. Oset	$D^{*} K^{*}$ molecular states
V. Baru	Compositeness from line shapes, $T_{c c}, X(3872)$
L. Roca	$\bar{B}^{(*)} \bar{K}^{(*)}$ molecular states
M. Bayar	$X(3960)$
N. Ikeno	$\Omega(2012)$
M.-Z. Liu	P_{c} pentaquarks
W.-H. Liang	$T_{c c}$
Related lattice talks:	
S. Prelovsek	$T_{c c}$
D. Wilson	$D \pi, D K$

(Near-)threshold structures

X.-K. Dong, FKG, B.-S. Zou, PRL 126 (2021) 152001

- (Near-)threshold structures (S-wave)
$>$ NREFT at LO: nontrivial (near-)threshold structures for attractive S-wave interaction
> Either threshold cusp or below-threshold peak
$>$ Peak more pronounced for heavier hadrons and stronger interaction
\checkmark That's why many (near-)threshold structures were observed in hidden-charm and hidden-bottom spectra
> Structures are process dependent

Distinct line shapes of amplitudes in the same coupled channels with the same poles

Survey of hidden-charm hadronic molecules

X.-K. Dong, FKG, B.-S. Zou, Progr. Phys. 41 (2021) 65 [arXiv:2101.01021]

- Approximations:
>Constant contact terms (V) saturated by light-vector-meson exchange, similar to the VMD in the resonance saturation of the low-energy constants in CHPT
G. Ecker, J. Gasser, A. Pich, E. de Rafael, NPB321(1989)311
$>$ Single channels
$>$ Neglecting mixing with normal charmonia
- Resummation:

$$
T=\frac{V}{1-V G}
$$

G : two-point scalar loop integral regularized using dim.reg. with a subtraction constant matched to a Gaussian regularized G at threshold

$$
\begin{aligned}
& G(E)=\frac{1}{16 \pi^{2}}\left\{a(\mu)+\log \frac{m_{1}^{2}}{\mu^{2}}+\frac{m_{2}^{2}-m_{1}^{2}+s}{2 s} \log \frac{m_{2}^{2}}{m_{1}^{2}}+\frac{k}{E} \log \frac{(2 k E+s)^{2}-m_{1}^{2}+m_{2}^{2}}{(2 k E-s)^{2}-m_{1}^{2}+m_{2}^{2}}\right\} \\
& G(E)=\int \frac{l^{2} d l}{4 \pi^{2}} \frac{\omega_{1}+\omega_{2}}{\omega_{1} \omega_{2}} \frac{e^{-2 l^{2} / \Lambda^{2}}}{E^{2}-\left(\omega_{1}+\omega_{2}\right)^{2}+i \epsilon} \text { with } \omega_{i}=\sqrt{m_{i}^{2}+l^{2}}
\end{aligned}
$$

- Hadronic molecules appear as bound or virtual state poles of the T matrix; more than 200 hidden-charm hadronic molecules were predicted

X(3872) and related states

$\checkmark \quad X(3872)$ as a $\bar{D} D^{*}$ bound state
$\checkmark \tilde{X}(3872)$ COMPASS, PLB783(2018)334
$\checkmark \bar{D} D$ bound state predicted with
lattice Prelovsek et al., JHEP2106,035
$\checkmark \quad X(3960)$

Data from
LHCb seminar by E. Spadaro Norella \& Chen Chen, July 05, 2022
Fit in
T. Ji, X.-K. Dong, M. Albaladejo, M.-L. Du, FKG, J. Nieves, arXiv:2207.08563
See the talk by Miguel Albaladejo
Virtual state may become bound with mixing from the $D^{*} \bar{D}^{*}$ state

Isoscalar vectors and related states

$\checkmark Y(4260) / \psi(4230)$ as a $\bar{D} D_{1}$ bound state
$\checkmark \psi(4360), \psi(4415): D^{*} \bar{D}_{1}, D^{*} \bar{D}_{2}$?
\checkmark Evidence for $1^{--} \Lambda_{c} \bar{\Lambda}_{c}$ bound state in BESIII data

- Sommerfeld factor
- Near-threshold pole
- Different from $Y(4630 / 4660)$

Data taken from BESIII, PRL120(2018)132001; Fitted with a virtual state pole in Q.-F. Cao et al., PRD100(2019)054040
\checkmark Many 1^{--}states in $[4.8,5.6] \mathrm{GeV}_{9}$

Closer look at the spin partners of $\boldsymbol{\psi}(\mathbf{4 2 3 0})$

T. Ji, X.-K. Dong, FKG, B.-S. Zou, PRL 129 (2022) 102002

- Prediction of an exotic 0^{--}spin partner $\psi_{0}(4360)\left[D^{*} \bar{D}_{1}\right]$ of $\psi(4230), \psi(4360)$, $\psi(4415)$ as $D \bar{D}_{1}, D^{*} \bar{D}_{1}, D^{*} \bar{D}_{2}$ hadronic molecules
- Robust against the inclusion of coupled channels and three-body effects

- May be searched for using $e^{+} e^{-} \rightarrow \psi_{0} \eta, \psi_{0} \rightarrow J / \psi \eta, D \bar{D}^{*}, D^{*} \bar{D}^{*} \pi, \ldots$

$$
M=(4366 \pm 18) \mathrm{MeV}
$$

$\Gamma<10 \mathrm{MeV}$

Hidden-charm pentaquarks

\checkmark The LHCb P_{c} states as $\bar{D}^{(*)} \Sigma_{c}$ molecules
$\checkmark \bar{D} \Sigma_{c}^{*}$ molecule: hint in the LHCb data

$$
e^{+} e^{-} \rightarrow J / \psi p \bar{p}, \Lambda_{c} \bar{D}^{(*)} p, J / \psi \Lambda \bar{\Lambda}, \Sigma_{c}^{(*)} \bar{D}^{(*)} p, \ldots
$$

More states with exotic quantum numbers

\checkmark Many baryon-antibaryon molecular states above 4.7 GeV , possible decay channels:
$J / \psi \pi, J / \psi K, \ldots$

Double-charm

\checkmark There is an isoscalar $D D^{*}$ molecular state
\checkmark It has a spin partner $1^{+} D^{*} D^{*}$ state
\checkmark Many (>100) other similar double-charm molecular states in other sectors

Conclusion and outlook

- Many hadronic molecular candidates in the heavy hadron spectrum
$>$ (Near-)threshold structures expected for hadron pairs with S-wave attraction
> Many hidden-charm molecules will be detected at LHCb, BEPCII-U, Belle-II, PANDA, EIC etc. Some example processes in $e^{+} e^{-}$:
- Meson-meson pairs via emission of light meson: $e^{+} e^{-} \rightarrow$

$$
M_{1} M_{2}\left(\phi, \omega, \rho, \pi, \eta, K^{(*)}\right)
$$

- Many baryon-antibaryon pairs above $4.8 \mathrm{GeV}: e^{+} e^{-} \rightarrow B_{1} \bar{B}_{2}$

Thank you for your attention!

EFT, models

Compositeness

- The constant form factor assumption can be replaced by a more general separable ansatz

$$
T_{p, k}=t_{k} g(p) g^{*}(k)
$$

Twice-subtracted dispersion relation \Rightarrow

$$
t^{-1}(W)=\left(W-E_{B}\right)+\left(W-E_{B}\right)^{2} \int_{0}^{\infty} \frac{q^{2} d q}{(2 \pi)^{3}} \frac{|g(q)|^{2}}{\left(h_{q}-E_{B}\right)^{2}\left(h_{q}-W\right)}
$$

Then, we get

$$
t(W)=\frac{1}{1-F(W)} \frac{1}{W-E_{B}}, \quad F(W) \equiv\left(W-E_{B}\right) \int_{0}^{\infty} \frac{q^{2} d q}{(2 \pi)^{3}} \frac{|g(q)|^{2}}{\left(h_{q}-E_{B}\right)^{2}\left(W-h_{q}\right)}
$$

- Compositeness emerges
- Introducing

$$
F(\infty)=\int_{0}^{\infty} \frac{q^{2} d q}{(2 \pi)^{3}} \frac{|\langle q| \hat{V}| B\rangle\left.\right|^{2}}{\left(h_{q}-E_{B}\right)^{2}}=\int_{0}^{\infty} \frac{q^{2} d q}{(2 \pi)^{3}}|\langle q \mid B\rangle|^{2}=X
$$

$$
F_{1}(W) \equiv \frac{\ln [1-F(W)]}{W-E_{B}}, \quad \operatorname{Im} F_{1}(E+i \varepsilon)=-\frac{\delta_{B}(E)}{E-E_{B}} \theta(E)
$$

here δ_{B} is the phase of the T-matrix with the nonpole term neglected (convention: $\delta_{B}(0)=0$)

$$
\begin{array}{r}
\delta_{B}\left(E=h_{p}\right) \equiv \arg T_{p, p}=-\arg (1-F(E+i \varepsilon)) \quad \delta_{B} \in[-\pi, 0] \\
F(0) \leq 0, \operatorname{Im} F(E+i \varepsilon) \leq 0 \text { for } E \geq 0
\end{array}
$$

Compositeness

- From the dispersion relation for $F_{1}(W)$, we obtain a solution:

$$
F(W)=1-\exp \left(\frac{W-E_{B}}{\pi} \int_{0}^{\infty} d E \frac{-\delta_{B}(E)}{(E-W)\left(E-E_{B}\right)}\right)
$$

and an expression for the compositeness

$$
X=1-\exp \left(\frac{1}{\pi} \int_{0}^{\infty} d E \frac{\delta_{B}(E)}{E-E_{B}}\right) \in[0,1]
$$

- Using $\operatorname{Im} F\left(h_{p}+i \epsilon\right)=-\frac{\pi p \mu}{(2 \pi)^{3}} \frac{|g(p)|^{2}}{h_{p}-E_{B}}$, we get

$$
|g(p)|^{2}=-\frac{(2 \pi)^{3}}{\pi p \mu}\left(h_{p}-E_{B}\right) \sin \delta_{B}(E) \exp \left[\frac{h_{p}-E_{B}}{\pi} f_{0}^{\infty} d E \frac{-\delta_{B}(E)}{\left(E-h_{p}\right)\left(E-E_{B}\right)}\right]
$$

- Consider ERE $\quad p \cot \delta_{B} \approx-\frac{8 \pi^{2}}{\mu} \operatorname{Re} T^{-1}\left(h_{p}\right)=\frac{1}{a}+\frac{r}{2} p^{2}+\mathcal{O}\left(p^{4}\right)$, we finally get

$$
g^{2}(p)=\frac{8 \pi^{2}}{\mu^{2} R} \times \begin{cases}X_{W}+\mathcal{O}\left(p^{4}\right) & \text { for } a \in[-R, 0] \& r \leq 0 \quad \text { constant } \\ \frac{a^{2}}{R^{2}} \frac{1}{1+(a+R)^{2} p^{2}}+\mathcal{O}\left(p^{4}\right) & \text { for } a<-R \& r>0\end{cases}
$$ contains $\mathcal{O}\left(p^{2}\right)$ terms, thus not self-consistent if using a constant g^{2} but still work up to $\mathcal{O}\left(p^{2}\right)$ in ERE. Weinberg's relations do not hold in this case

Compositeness

- Poles of the T-matrix with ERE up to $\mathcal{O}\left(p^{2}\right): \frac{1}{a}+\frac{r}{2} p^{2}-i p=\frac{r}{2}\left(p-p_{+}\right)\left(p-p_{-}\right)$
$p_{-}=\frac{i}{R}, \quad p_{+}=-\frac{i}{R+a}$
with $R=\frac{1}{\sqrt{2 \mu\left|E_{B}\right|}} ; r$ is expressed as $r=\frac{2 R}{a}(R+a)$
- For $a \in[-R, 0]$, then $r<0$, one bound state and one virtual state pole

$$
g^{2}(p)=\frac{8 \pi^{2}}{\mu^{2} R} X_{W}+\mathcal{O}\left(p^{4}\right), \quad X=X_{W} \simeq \sqrt{\frac{1}{1+2 r / a}}
$$

- For $a<-R$, then $r>0$, two bound state poles (the remote one $\sim i / \beta$ is unphysical)

$$
g^{2}(p)=\frac{8 \pi^{2}}{\mu^{2} R} \frac{a^{2}}{R^{2}} \frac{1}{1+(a+R)^{2} p^{2}}+\mathcal{O}\left(p^{4}\right), \quad X \simeq 1-e^{-\infty}=1
$$

For the deuteron, $R=4.31 \mathrm{fm}, a=-5.42 \mathrm{fm}, a+R \sim \beta^{-1} \sim m_{\pi}^{-1}$

$$
\begin{aligned}
& X=1-\exp \left(\frac{1}{\pi} \int_{0}^{\infty} d E \frac{\delta_{B}(E)}{E-E_{B}}\right) \in[0,1] \\
& p \cot \delta_{B}=\frac{1}{a}+\frac{r}{2} p^{2} \Rightarrow \delta_{B}(\infty)=0 \text { for } r<0, \text { and } \delta_{B}(\infty)=-\pi \text { for } r>0
\end{aligned}
$$

- For extension of the Weinberg's relations to virtual state and near-threshold resonance, see
I. Matuschek et al., EPJA57, 101 (2021); Christoph's talk

