

Bertram Kopf

Coupled Channel Partial Wave Analysis

for Light Meson Spectroscopy

9th International Conference on Quarks and Nuclear Physics 5-9 September 2022

Introduction

- Light mesons are bound states consisting of u-, d- and s-quarks
- Cover the non-perturbative QCD regime
- Description very challenging
 - Iattice QCD
 - > phenomenological models
- Observation and measurements of the resonance properties very challenging
 - many overlapping resonances with same quantum numbers
 - resonances decay in different channels
 - > distinction between conventional qq̄-mesons

and exotics difficult

energy dependence of $\alpha_{\rm s}$

Glueballs and Hybrids

- A doubtless evidence for exotics are the observation of resonances with spin-exotic quantum numbers which are forbidden for qq-mesons
- LQCD: lightest glueballs with spin-exotic quantum numbers J^{PC}= 0⁺⁻, 1⁻⁺, 2⁺⁻ above 4 GeV/c²
- Glueballs in the light meson mass range only with non exotic quantum numbers J^{PC}= 0⁺⁺, 0⁻⁺, 2⁺⁺ predicted
- Lightest hybrid state expected just below 2 GeV/c² with exotic quantum $_{2.5}$ numbers $I^{G}(J^{PC}) = 1^{-}(1^{-+})$

Exotic π_1 below 2 GeV/c²

- 2 π_1 candidates below 2 GeV/c² listed in the PDG
- π₁(1400)
 - > only observed in the decay channel $\pi \eta$ in πp -scattering and $\overline{p}p$ and $\overline{p}n$ annihilation
- π₁(1600)
 - observed in the decay channels $\rho\pi$, η'π, f₁(1285) π, b₁(1235) π in πp-scattering
 - > but not observed in $\pi\eta$
- How are these observations compatible with the LQCD calculations?
 - > only one π_1 predicted slightly below 2 GeV/c²
 - is one of the candidates not a hybrid state or even not a resonance?

Coupled Channel Analysis

- Access to the inner structure of a resonance
 - determination of resonance properties like quantum numbers, pole positions and coupling strengths
 - characteristics of the production and the decay pattern
 - Extractions of these properties are often not sufficient for analyses of only one single channel
- Advantages compared to single channel fits
 - common and unique description of the dynamics
 - better description of threshold effects
 - better fulfillment of the conservation of unitarity
 - > more constraints due to common amplitudes

Dynamical Functions

- Breit-Wigner functions widely used
 - > good approximation for isolated resonances
 - violate the unitarity
 - resonance parameters are not unique and depend on the production and decay process
- More sophisticated descriptions needed for
 - resonances decaying into multiple channels
 - several resonances with the same quantum numbers appearing in the same channel
 - \succ resonances located at thresholds \rightarrow distortion of the line shape

Approaches with an adequate consideration

of unitarity and analyticity needed

(K-matrix, N/D-method, Two-potential decomposition)

• Two-body scattering process can be described by the S-matrix: $S = I + 2i \sqrt{\rho} T \sqrt{\rho}$

bare coupling to channel i an j of resonance α

• T-matrix can be expressed by K-matrix: $T = (I - i K C(s))^{-1} K$

C(s): Chew-Mandelstam function guaranties analyticity $\rho(s) = -Im(C(s))$

- Generalization of the K-matrix formalism to the case of production of
 resonances in more complex reaction
 Aitchison: Nucl Phys A189 (1972) 417
- Dynamical function for P-vector approach:

$$F = (I - i K C(s))^{-1} P$$

bare coupling strength to the production
with:
$$P_i = \sum_{\alpha} \frac{\beta_{\alpha}g_{\alpha_i}}{m_{\alpha}^2 - s} + \sum_k c_{ki}s^k$$

same pole structure
as for K-matrix

QNP2022, September 5-9 2022

Bertram Kopf, Ruhr-Universität Bochum

7

PAWIAN

- PArtial Wave Interactive ANalysis software package
- Supports $\overline{p}p$ and e⁺e⁻-annihilation, $\gamma\gamma$ -fusion and πp and $\pi\pi$ scattering
- Hypothesis and other settings defined via configuration files
 - > spin formalisms: e.g. canonical, helicity, ...
 - > dynamics: Breit-Wigner, K-matrix, ...
- Channels with arbitrary number of final state particles
- Event based maximum likelihood fit using MINUIT2
- Support for parallelization
- Analysis tools: extraction of pole positions, branching fractions, ...
- Event generator, histogramming, efficiency correction, ...

PWA with $\bar{p}p$ Data from Crystal Barrel at LEAR

- Fixed target experiment at CERN
- In operation between 1989 and 1996
- $\bar{p}p$ annihilation at rest and in flight
 - > highest beam momentum 1.94 GeV/c
- Physics program
 - spectroscopy of light mesons and search for exotic states

Eur. Phys. J. C (2020) 80:453

Crystal Barrel Collaboration

Coupled channel analysis of $\bar{p}p \rightarrow \pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$ and $K^+ K^- \pi^0$ at 900 MeV/c and of $\pi \pi$ -scattering data

$\overline{p}p \rightarrow K^+ K^- \pi^0, \pi^0 \pi^0 \eta, \pi^0 \eta \eta$

Why pp data?

- Many a₀, a₂, f₀ and f₂ resonances appear in two or all three channels
 - constraints due to common production amplitudes
 - > disentangling of the isospin components in the K⁺K⁻ system possible
 - > description of the dynamics via K-matrices (unitarity and analyticity)
- Exotic spin wave π_1 so far only seen in $\overline{p}p$ data at rest
 - > also visible in $\overline{p}p$ in flight data

Why scattering data?

- Process only characterized by elasticity and phase motion
 - > good and easy access to resonance properties
- Considered for I=0 S- and D-wave and I=1 P-wave
- Good constraints for f_0, f_2 and ρ resonance

Best Fit Result achieved for

- K-matrix description for
 - > f₀ with 5 poles and 5 channels
 - > f₂ with 4 poles and 4 channels
 - $\succ \rho$ with 2 poles and 3 channels
 - > a_0 and a_2 with 2 poles and 2 channels, each
 - ≻ $\pi_1^0 \rightarrow \pi^0 \eta$ in $\pi^0 \pi^0 \eta$ with 1 pole and 2 channels
 - \succ (K π)s-wave: fixed parameterization from FOCUS-experiment
- Breit-Wigner description for
 - $\succ \Phi(1020) \rightarrow \mathrm{K^+} \mathrm{K^-}$
 - > $K^{*\pm}(892) \rightarrow K^{\pm}\pi^{0}$

all pole positions and coupling strengths are free parameters

Phys. Lett. B653 (2007) 1-11

 $\overline{p}p \rightarrow K^+ K^- \pi^0, \pi^0 \pi^0 \eta, \pi^0 \eta \eta$

QNP2022, September 5-9 2022

$\pi\pi$ Scattering Data

- All scattering data are well described
- $\pi\pi \rightarrow \pi\pi$ elasticity and $\pi\pi \rightarrow K\overline{K}$, $\eta\eta$, $\eta\eta'$ are not shown here

used data

Phys. Rev. D83(2011) 074004 Nucl. Phys B64 (1973) 134-162 Nucl. Phys B100 (1975) 205-224 J. Phys G40 (2013) 043001 Nucl. Phys B64 (1973) 134-162 Nucl. Phys B269 (1986) 485 Nouvo Cimento A80 (1984) 363

Phases for $\pi\pi \rightarrow \pi\pi$

QNP2022, September 5-9 2022

- K-matrix contains all resonance parameters
- Masses and widths defined by the pole position in the complex energy plane of the T-matrix sheet closest to the physical sheet
- Related partial decay width can be extracted via the residues:

$$Res_{k\to k}^{\alpha} = \frac{1}{2\pi i} \oint_{C_{z\alpha}} \sqrt{\rho_k} \cdot T_{k\to k}(z) \cdot \sqrt{\rho_k} \, dz$$

More than 50 different resonance properties extracted on the relevant Riemann-sheets for f_0 , f_2 , a_0 , a_2 and ρ resonances

QNP2022, September 5-9 2022

1⁻⁺ Wave in $\overline{p}p \rightarrow \pi^0 \pi^0 \eta$

- 1-+ wave seen in the decay $\pi^0\eta$
- K-matrix description with 1 pole and two channels $\pi\eta$ and $\pi\eta'$
 - \succ no data for $\pi\eta$ and only used for unitarity
- Phase difference between the π_1 and a_2 wave from $T_{\pi\eta \rightarrow \pi\eta}$ in good agreement with COMPASS measurement
- Obtained pole parameters consistent with $\pi_1(1400)$

 $\begin{array}{c}
200 \\
\hline 0 \\
\hline 0$

Phys. Lett. B740 (2015) 303-311 Phys. Lett. B811 (2020) 135913 (erratum)

JPAC Analysis of COMPASS Data

- Coupled channel analysis of the 1⁻⁺ and 2⁺⁺ wave in π p $\rightarrow \pi$ η (+) p
- Enforcing analyticity and unitarity utilizing N/D method
- Mass shapes and phase shifts between 1⁻⁺ and 2⁺⁺ are considered
- Peak at 1.4 GeV/c² in πη and 1.6 GeV/c² in πη' are described by one pole at (1564 ± 24 ± 86) i(246 ± 27 ± 51) MeV
- Cannot be described by only one resonance with Breit-Wigner description

QNP2022, September 5-9 2022

Coupled Channel Analysis with pp & COMPASS Data

• Extension: simultaneous fit of $\pi\pi$ -scattering data, $\overline{p}p \rightarrow K^+ K^- \pi^0$, $\pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$

and $\pi^{\scriptscriptstyle -} \, p \twoheadrightarrow \pi^{\scriptscriptstyle -} \, \eta^{({}^{\scriptscriptstyle \bullet})} \, p$

- Good description with one pole scenario for the 1⁻⁺ wave using K-matrix
 - confirmation of the JPAC analysis based on N/D-method

QNP2022, September 5-9 2022

Coupled Channel Analysis with pp & COMPASS Data

• π_1 mass is moving from 1.4 GeV/c² to 1.6 GeV/c² and consistent with $\pi_1(1600)$ with $\pi\eta'$ data

Table 1 Obtained masses, total widths and ratios of partial widths for the pole of the spin-exotic π_1 -wave and for the two poles in the a_2 -wave, the $a_2(1320)$ and the $a_2(1700)$. The first uncertainty is the statistical and the second the systematic one

Name	Pole mass (MeV/ c^2)	Pole width (MeV)	$\Gamma_{\pi\eta'}/\Gamma_{\pi\eta}$ (%)	$\Gamma_{KK}/\Gamma_{\pi\eta}$ (%)
a ₂ (1320)	$1318.7 \pm 1.9^{+1.3}_{-1.3}$	$107.5 \pm 4.6 \substack{+3.3 \\ -1.8}$	$4.6 \pm 1.5 \substack{+7.0 \\ -0.6}$	$31 \pm 22 {+9 \atop -11}$
a ₂ (1700)	$1686 \pm 22 {}^{+19}_{-7}$	$412 \pm 75 {}^{+64}_{-57}$	$3.5 \pm 4.4 \substack{+6.9 \\ -1.2}$	$2.9 \pm 4.0 {+1.1 \atop -1.2}$
π_1	$1623 \pm 47^{+24}_{-75}$	$455 \pm 88^{+144}_{-175}$	$554 \pm 110 {}^{+180}_{-27}$	-
		•		
In a but	agreement with LQCD	calculations for the li	ightest hybrid, Phys.	Rev. D 103, 05402 (2021)

QNP2022, September 5-9 2022

Bertram Kopf, Ruhr-Universität Bochum

18

Summary and Conclusion

- Determination of the resonance parameters and coupling strengths to different production and decay processes important for classifying states
- Coupled channel analyses of data from different production mechanisms and decay systems are needed
- Sophisticated descriptions of the dynamics needed by taking into account analyticity and unitarity
- Coupled channel PWA in the light meson sector are shown with data from $\overline{p}p$ -annihilation, πp -reactions and $\pi \pi$ -scattering processes
 - > peaks at 1.4 GeV/c² in $\pi\eta$ and at 1.6 GeV/c² in $\pi\eta$ ' of the spin exotic 1⁻⁺ wave can be described by only one pole using K-matrix formalism and is consistent with the $\pi_1(1600)$
- PWA of the π_1 wave with more data and additional decay channels could shed more light on the knowledge of the lightest hybrid below 2 GeV/c²