Baryon Spectroscopy with the CBELSA/TAPS experiment

Annika Thiel

QNP - The 9th International Conference on Quarks and Nuclear Physics

06/09/2022

Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, Germany and School of Physics and Astronomy, University of Glasgow, Scotland

Motivation

Structure of Matter: Spectroscopy

Spectroscopy of Hadrons

Excitation spectrum gives information about the dynamics inside the nucleon (quarks and gluons)

Theoretical Predictions

Calculations predict more resonances than have been measured ("missing resonances")

 \rightarrow What are the relevant degrees of freedom?

Resonances

Partial wave analysis needed to disentangle the resonances.

Resonances overlap strongly with different strengths and widths

 \rightarrow Weak resonance contributions difficult to measure

Polarization Observables

16 Polarization Observables in photoproduction of pseudoscalar mesons:

			Target			Recoil		Target+Recoil				
		_	_	_	×'	y'	z'	×'	×'	z'	z'	
Photon		×	У	z	-	-	-	х	z	х	z	
unpolarized	σ	-	Т	-	-	Р	-	$T_{x'}$	$-L_{x'}$	$T_{z'}$	$L_{z'}$	
linearly pol.	Σ	Н	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	—	_	_	-	
circularly pol.	-	F	-	-E	$-C_{x'}$	-	$-C_{z'}$	-	-	-	-	

 \rightarrow nearly full 4 π angular coverage

Extraction of the observables

Cross Section with Beam und Target Polarization

$$\begin{array}{ll} (\phi) &=& \displaystyle \frac{d\sigma}{d\Omega}(\theta) \cdot \left[1 - p_{\gamma}^{lin} \Sigma \cos(2\phi) \right. \\ &+& \displaystyle p_{x}(-p_{\gamma}^{lin} H \sin(2\phi) + p_{\gamma}^{circ} F) \\ &-& \displaystyle p_{y}(-T + p_{\gamma}^{lin} P \cos(2\phi)) \\ &-& \displaystyle p_{z}(-p_{\gamma}^{lin} G \sin(2\phi) + p_{\gamma}^{circ} E) \right] \end{array}$$

			Target Polarization						
	Photon Polarization		х	у	z				
	unpolarized	σ	-	Т	-				
	linearly polarized	Σ	Н	Р	G				
	circularly polarized	-	F	_	E				

 $\frac{d\sigma}{d\Omega}(\theta$

π^{0} -photoproduction:

G: A.Thiel et al., PRL 109 (2012) 102001 Eur.Phys.J. A53 (2017) 1, 8 E: M. Gottschall et al., PRL 112 (2014) 012003

T, P, H: J. Hartmann et al., PRL 113 (2014) 062001 Phys.Lett. B748 (2015) 212

Cusp Effect visible in η Photoproduction

High precision measurement of the Beam Asymmetry with high angular coverage

Cusp effect of the η' threshold visible in the Legendre coefficients

[F. Afzal et al., Phys.Rev.Lett. 125 (2020) 15, 152002]

8

$\gamma p \rightarrow p\eta$: Double Polarization Observable E and G

[J. Müller et al., Phys. Lett. B 803, 135323 (2020)]

Observables in Multi-Meson Final States

- Multi-meson final states like $\gamma p \to p \pi^0 \pi^0$ or $\pi^0 \eta$ preferred at higher energies
- Probes the high mass region, where the missing resonances occur
- Can help to observe cascading decays

Observables in Multi-Meson Final States

- Multi-meson final states like $\gamma p \rightarrow p \pi^0 \pi^0$ or $\pi^0 \eta$ preferred at higher energies
- Probes the high mass region, where the missing resonances occur
- Can help to observe cascading decays

[V. Sokhoyan et al., Eur.Phys.J. A51 (2015) no.8, 95]

$\gamma p \rightarrow p \pi^0 \pi^0$: Polarization Observables T, P, H

Only results shown in quasi two-body kinematics

Observables also extracted for different kinematic variables

Full three-body kinematics allows the measurement of further observables.

[T. Seifen et al., arXiv:2207.01981]

First Indication of Triangle Singularities in $\gamma p \rightarrow p \pi^0 \eta$

Structure observed in the $p\eta$ invariant mass

Triangle singularity can describe this structure

Observation of a triangle singularity in baryon spectroscopy?

[V. Metag et al. Eur.Phys.J.A 57 (2021) 12, 325]

Interpretation

Multipoles and CGLN Amplitudes

Multipoles give informations about the intermediate states, can be combined into four CGLN amplitudes:

$$egin{aligned} F_1(W,z) &= \sum_{\ell=0}^\infty [\ell M_{\ell+} + E_{\ell+}] \cdot P'_{\ell+1}(z) + [(\ell+1)M_{\ell-} + E_{\ell-}] \cdot P'_{\ell-1}(z) \ F_2(W,z) &= \sum_{\ell=0}^\infty \ldots \end{aligned}$$

with $z = \cos \theta_{\pi}$ and the Legendre polynomials $P_{\ell}(z)$.

...

Multipoles and CGLN Amplitudes

Multipoles give informations about the intermediate states, can be combined into four CGLN amplitudes:

$$egin{aligned} &F_1(W,z) = \sum_{\ell=0}^\infty [\ell M_{\ell+} + E_{\ell+}] \cdot P'_{\ell+1}(z) + [(\ell+1)M_{\ell-} + E_{\ell-}] \cdot P'_{\ell-1}(z) \ &F_2(W,z) = \sum_{\ell=0}^\infty \ldots \end{aligned}$$

with $z = \cos \theta_{\pi}$ and the Legendre polynomials $P_{\ell}(z)$.

...

All observables can be expressed in CGLN amplitudes, for example:

$$\hat{\Sigma} = \frac{\Sigma \cdot \sigma(\theta_{\pi})}{\rho_{0}} = -\sin^{2}\theta_{\pi} \cdot Re\left[\frac{1}{2}|F_{3}|^{2} + \frac{1}{2}|F_{4}|^{2} + F_{2}^{*}F_{3} + F_{1}^{*}F_{4} + \cos\theta F_{3}^{*}F_{4}\right]\rho_{0}$$

with the density of states $\rho_0 = k/q$.

Multipoles and CGLN Amplitudes

Multipoles give informations about the intermediate states, can be combined into four CGLN amplitudes:

with $z = \cos \theta_{\pi}$ and the Legendre polynomials $P_{\ell}(z)$.

All observables can be expressed in CGLN amplitudes, for example:

$$\hat{\Sigma} = \frac{\Sigma \cdot \sigma(\theta_{\pi})}{\rho_0} = -\sin^2 \theta_{\pi} \cdot Re \left[\frac{1}{2} |F_3|^2 + \frac{1}{2} |F_4|^2 + F_2^* F_3 + F_1^* F_4 + \cos \theta F_3^* F_4 \right] \rho_0$$

with the density of states $\rho_0 = k/q$.

Example of a Truncated Partial Wave Analysis

Observable described by

$$\check{T} = T \cdot \sigma = rac{q}{k} \sin heta \left[\sum_{h=0}^{2L_{max}-1} A_h (\cos heta)^h
ight]$$

• using S- and P-waves (
$$L_{max} = 1$$
):

$$\check{T} = \frac{q}{k} \sin \theta \left[A_0 + A_1 \cdot \cos \theta \right]$$

• using S-, P- and D-waves (
$$L_{max} = 2$$
):

$$\check{T} = \frac{q}{k}\sin\theta[A_0 + A_1 \cdot \cos\theta + A_2 \cdot \cos^2\theta + A_3 \cdot \cos^3\theta]$$

• using S-, P-, D- and F-waves ($L_{max} = 3$):

$$\check{\mathcal{T}} = \frac{q}{k} \sin \theta [A_0 + A_1 \cdot \cos \theta + A_2 \cdot \cos^2 \theta + A_3 \cdot \cos^3 \theta + A_4 \cdot \cos^4 \theta + A_5 \cdot \cos^5 \theta]$$

First Interpretation with a Truncated Partial Wave Analysis

First Interpretation with a Truncated Partial Wave Analysis

New Fits from different Analyses

New observables for $p\pi^0$ have been included in the analyses of the groups:

- BnGa (black)
- JüBo (red)
- SAID (blue)

For all other multipoles see: [Anisovich et al., Eur.Phys.J. A52 (2016) no.9, 284]

New Fits from different Analyses

New observables for $p\pi^0$ have been included in the analyses of the groups:

- BnGa (black)
- JüBo (red)
- SAID (blue)

Variance between the different analyses decreases!

For all other multipoles see: [Anisovich et al., Eur.Phys.J. A52 (2016) no.9, 284]

Comparison between PDG values

- Until 2010: almost only results from pion nucleon scattering used in the PDG, only few pion photoproduction data used
- PWA groups include photoproduction data with different final states from several experiments
- Now: new values from the fits are entering the PDG

Particle	J^{P}	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	$N\rho$	$N\omega$	$N\eta'$
N	$1/2^+$	****										
N(1440)	$1/2^+$	****	****	****	***	***	-			-		
N(1520)	$3/2^{-}$	****	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	****	****	***	*	****					
N(1650)	$1/2^{-}$	****	****	****	***	*	****	*				
N(1675)	$5/2^{-}$	****	****	****	****	***	*	*	*	2.00		
N(1680)	$5/2^+$	****	****	****	****	***	*	*	*			
N(1700)	$3/2^{-}$	***	**	***	***	*	*		2	2.00		
N(1710)	$1/2^+$	***	***	***	*_		***	**	*	*	*	
N(1720)	$3/2^+$	****	****	****	***	*	*	****	*	*_	*	
N(1860)	$5/2^{+}$	**	*	**		*	*					
N(1875)	$3/2^{-}$	***	**	**	*	**	*	*	*	*	*	
N(1880)	$1/2^+$	***	**	*	**	*	*	**	**		**	
N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****
N(1900)	$3/2^+$	****	****	**	**	*	*	**	**	2.00	*	**
N(1990)	$7/2^+$	**	**	**			*	*	*			
N(2000)	$5/2^+$	**	**	*_	**	*	*	2.00			*	
N(2040)	$3/2^{+}$	*		*								
N(2060)	$5/2^{-}$	***	***	**	*	*	*	*	*	*	*	
N(2100)	$1/2^+$	***	**	***	**	**	*	*		*	*	**
N(2120)	$3/2^{-}$	***	***	**	**	**		**	*		*	*
N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^+$	****	**	****			*	*	*			
N(2250)	$9/2^{-}$	****	**	****			*	*	*			
N(2300)	$1/2^{+}$	**		**								
N(2570)	$5/2^{-}$	**		**								
N(2600)	$11/2^{-}$	***		***								
N(2700)	$13/2^+$	**		**								

Large improvement, but still lot of work to be done!

Measurements off Neutrons

Unpolarized cross section

Polarization observables

- Database still sparse for completely neutral final states like $\gamma n \rightarrow n\pi^0$
- Challenging final states require improved detector system

Recent Developments

- Crystal Barrel calorimeter does not provide a fast trigger signal
- $\rightarrow\,$ Trigger on neutrons not possible!

Calorimeters were completely dismantled and read out replaced for higher rates, trigger and time determination

 \rightarrow New high-statistics data sets for completely neutral final states possible!

Summary

Conclusion

- Reactions like $\gamma p \rightarrow p\pi^0$, $p\eta$, $p\eta'$, $p\pi^0\pi^0$, ... have been measured with polarized photons and protons with the CBELSA/TAPS experiment
- Data for the observables Σ , *G*, *E*, *T*, *P* and *H* has been published for π^0 and η photoproduction, other channels will follow soon
- Data is included in the different partial wave analyses and the multipoles are converging
- Crystal Barrel detector was upgraded for a higher detection efficiency for photoproduction off the neutron
- New polarization data will help to understand the resonance spectrum and will provide an experimental basis for comparison with constituent quark models, lattice QCD or other methods

New Review Paper:

A. T., F. Afzal and Y. Wunderlich,

Light Baryon Spectroscopy

Progress in Particle and Nuclear Physics 125 (2022) 103949 e-Print: 2202.05055 [nucl-ex]

Thank you for your attention!