The Primakoff Experimental Program at Jefferson Lab

Liping Gan University of North Carolina Wilmington

Outline

- Introduction
- Current JLab Primakoff program at 6 & 12 GeV
- New opportunities with future 24 GeV upgrade
- Summary

Challenges in Physics

Confinement QCD

- Nature of QCD confinement
- Its relationship to the dynamical chiral symmetry breaking

New physics beyond the Standard Model (SM)

- New sources of CP violation
- Dark matter
- Dark energy

The Primakoff effect provides a great experimental tool to explore both fundamental issues.

2

What is the Primakoff Effect?

Photo-Production of Neutral Mesons in Nuclear Electric Fields and the Mean Life of the Neutral Meson*

H. PRIMAKOFF†

Laboratory for Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts January 2, 1951

I T has now been well established experimentally that neutral π -mesons (π^0) decay into two photons. Theoretically, this two-photon type of decay implies zero π^0 spin; in addition, the decay has been interpreted as proceeding through the mechanism of the creation and subsequent radiative recombination of a virtual proton anti-proton pair. Whatever the actual mechanism of the (two-photon) decay, its mere existence implies an effective interaction between the π^0 wave field, φ , and the electromagnetic wave field, E, H, representable in the form:

Interaction Energy Density = $\eta(\hbar/\mu c)(\hbar c)^{-\frac{1}{2}}\varphi \mathbf{E} \cdot \mathbf{H}$. (1)

Here φ has been assumed pseudoscalar, the factors $\hbar/\mu c$ and $(\hbar c)^{-\frac{1}{2}}$ are introduced for dimensional reasons (μ =rest mass of π^0),

H. Primakoff, Phys. Rev. 81, 899 (1951)

Distinguishable Features of Primakoff Effect

$$\frac{d\sigma_{\text{Pr}}}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2}{m_{\pi}^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q)|^2 \sin^2 \theta_{\pi}$$

- Peaked at very small forward angle: $\langle \theta_{\rm Pr} \rangle_{\rm peak} \propto \frac{m^2}{2E^2}$
- Beam energy sensitive:

$$\left\langle \frac{d\sigma_{Pr}}{d\Omega} \right\rangle_{peak} \propto \frac{E^4}{m^3}$$
, $\int d\sigma_{Pr} \propto \frac{Z^2}{m^3} \log E$

$$\left\langle \left\langle \theta_{Pr} \right\rangle_{peak} \propto \frac{m^2}{2E^2} \right. \left\langle \left\langle \theta_{NC} \right\rangle_{peak} \propto \frac{2}{E \bullet A^{1/3}}$$

Coherent process

- The higher beam energy is, the higher Primakoff cross and the better separation of Primakoff from the nuclear backgrounds.
- A higher beam energy is more important for more massive particle₄

Primakoff Program at JLab 6 & 12 GeV

Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect

a) Two-Photon Decay Widths:

- 1) $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ @ 6 GeV
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
- 3) $\Gamma(\eta' \rightarrow \gamma\gamma)$

Input to Physics:

- precision tests of chiral symmetry and anomalies
- determination of light quark mass ratio
- η-η' mixing angle
- → input to calculate HLbL in (g-2)_µ

b) Transition Form Factors at Q² of 0.001-0.3 GeV²/c²: $F(\gamma\gamma^* \rightarrow \pi^0), F(\gamma\gamma^* \rightarrow \eta), F(\gamma\gamma^* \rightarrow \eta')$

Input to Physics:

- π⁰,η and η' electromagnetic interaction radii
- is the η' an approximate Goldstone boson?
- → input to calculate HLbL in (g-2)_u

Low-Energy QCD Symmetries and Light Mesons

QCD Lagrangian in Chiral limit (m_α→0) is invariant under:

$$SU_L(3) \times SU_R(3) \times U_A(1) \times U_B(1)$$

- Chiral symmetry SU_L(3)xSU_R(3) spontaneously breaks to SU(3)
 - > 8 Goldstone Bosons (GB)
- U_A(1) is explicitly broken:(Chiral anomalies)
 - $ightharpoonup \Gamma(\pi^0 \rightarrow \gamma \gamma), \Gamma(\eta \rightarrow \gamma \gamma), \Gamma(\eta' \rightarrow \gamma \gamma)$
 - \triangleright Non-zero mass of η_0
- □ SU_L(3)xSU_R(3) and SU(3) are explicitly broken:
 - > GB are massive
 - Mixing of π^0 , η, η'

The π^0 , η , η' system provides a rich laboratory to study the symmetry structure of QCD at low energies.

Status of Primakoff Program at JLab 6 & 12 GeV

γ π°

Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect

a) Two-Photon Decay Widths:

- 1) $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ @ 6 GeV
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
- 3) $\Gamma(\eta' \rightarrow \gamma\gamma)$

Input to Physics:

- precision tests of chiral symmetry and anomalies
- determination of light quark mass ratio
- η-η' mixing angle
- input to calculate HLbL in (g-2)

 µ

 The chiral anomaly prediction is exact for massless quarks:

$$\Gamma(\pi^0 \to \gamma \gamma) = \frac{m_{\pi^0}^3 \alpha^2 N_c^2}{576 \pi^3 F_{\pi^0}^2} = 7.750 \pm 0.016 \, eV$$

Γ(π⁰→γγ) is one of the few quantities in confinement region that QCD can calculate precisely at ~1% level to higher orders!

Status of Primakoff Program at JLab 6 & 12 GeV (cont.)

Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect

a) Two-Photon Decay Widths:

- 1) $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ @ 6 GeV
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
- 3) $\Gamma(\eta' \rightarrow \gamma\gamma)$

Input to Physics:

- precision tests of chiral symmetry and anomalies
- determination of light quark mass ratio
- η-η' mixing angle
- input to calculate HLbL in (g-2)_μ

$$\frac{d\sigma_{Pr}}{d\Omega} = \frac{\Gamma_{\gamma\gamma}}{m_{\eta}^3} \frac{8\alpha Z^2}{Q^4} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q^2)|^2 \sin^2 \theta_{\eta}$$

On-Going PrimEx-eta experiment

- Two data sets were collected in 2019 and in 2021.
- The third run started on Aug 18 until Dec 19, in 2022.

Physics for $\Gamma(\eta \rightarrow \gamma\gamma)$ Measurement

1. Resolve long standing discrepancy between previous collider and Primakoff measurements:

2. Extract η - η 'mixing angle:

Improve calculation of the η-pole contribution to Hadronic Light-by-Light (HLbL) scattering in (g-2)_μ

4. Improve all partial decay widths in the η -sector

Precision Determination Light Quark Mass Ratio

A clean probe for quark mass ratio:
$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$
, where $\hat{m} = \frac{1}{2}(m_u + m_d)$

- $\rightarrow \eta \rightarrow 3\pi$ decays through isospin violation: $A = (m_u m_d)A_1 + \alpha_{em}A_2$
- $\triangleright \ \alpha_{em}$ is small
- > Amplitude: $A(\eta \to 3\pi) = \frac{1}{O^2} \frac{m_K^2}{m_-^2} (m_\pi^2 m_K^2) \frac{M(s, t, u)}{3\sqrt{3}F^2}$

Phys. Rept. 945 (2022) 1-105

Precision Determination Light Quark Mass Ratio

A clean probe for quark mass ratio:
$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$
, where $\hat{m} = \frac{1}{2}(m_u + m_d)$

- $\rightarrow \eta \rightarrow 3\pi$ decays through isospin violation: $A = (m_u m_d)A_1 + \alpha_{em}A_2$
- $\triangleright \ \alpha_{em}$ is small
- > Amplitude: $A(\eta \to 3\pi) = \frac{1}{O^2} \frac{m_K^2}{m^2} (m_\pi^2 m_K^2) \frac{M(s, t, u)}{3\sqrt{3}F^2}$

- Critical input to extract Cabibbo Angle, $V_{us} = \sin(\theta_c)$ from kaon or hyperon decays.
- V_{us} is a cornerstone for test of CKM unitarity:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

PrimEx-eta Experiment on $\Gamma(\eta \rightarrow \gamma\gamma)$ in Hall D

- ➤ Tagged photon beam (~8.0-11.7 GeV).
- ➤ Pair spectrometer and a TAC detector for the photon flux control.
- ➤ Liquid Hydrogen (3.5% R.L.) and ⁴He targets (~4% R.L.)
- \triangleright The η decay photons are detected by Forward Calorimeter (FCAL); the charged decay particles of η are detected by the GlueX spectrometer.
- CompCal and FCAL to measure Compton scattering off atomic electron for control of overall systematics.

Control Systematics with Compton Scattering

Preliminary Results on the η Yield

η Yield from phase I data:

Simulations:

Space-Like Transition Form Factors

 $(Q^2: 0.001-0.3 \text{ GeV}^2/c^2)$

Direct measurement of slopes

- Interaction radii:
 F_{vv*P}(Q²)≈1-1/6 · <r²>_PQ²
- ChPT for large N_c predicts relation between the three slopes. Extraction of O(p⁶) low-energy constant in the chiral Lagrangian
- Input for hadronic light-by-light calculations in muon (g-2)

Improvement with a 24 GeV Beam

Higher Primakoff cross section:
$$\left(\frac{d\sigma_{\rm Pr}}{d\Omega}\right)_{peak} \propto \frac{E^4}{m^3}$$
 $\int d\sigma_{\rm Pr} \propto \frac{Z^2}{m^3} \log(E)$

Better separation of Primakoff from nuclear processes:

$$\left\langle \theta_{\rm Pr} \right\rangle_{peak} \propto \frac{m^2}{2E^2} \qquad \left\langle \theta_{NC} \right\rangle_{peak} \propto \frac{2}{E \bullet A^{1/3}}$$

A 24 GeV beam will significantly improve the measurements of decay width $\Gamma(\eta' \to \gamma\gamma)$, the transition form factors $F(\eta \to \gamma^*\gamma)$ and $F(\eta' \to \gamma^*\gamma)$.

New opportunities with JLab 24 GeV Upgrade

- 1. Precision measurement of decay width $\Gamma(\pi^0 \to \gamma \gamma)$ and transition form factor $F(\pi^0 \to \gamma^* \gamma)$ via the Primakoff effect off an atomic electron target.
- Search for new sub-GeV gauge bosons (scalars and pseudoscalars) via the Primakoff production:
 - Strong CP and Hierarchy problems
 - $(g-2)_{\mu}$ and puzzle of proton charge radius
 - Portals coupling SM to the dark sector:

$$H^{+}H(\varepsilon S + \lambda S^{2})$$
 $c_{\gamma\gamma}\frac{\alpha}{4\pi}\frac{a}{f}F_{\mu\nu}\widetilde{F}^{\mu\nu} + c_{GG}\frac{\alpha_{s}}{4\pi}\frac{a}{f}G^{a}_{\mu\nu}\widetilde{G}^{a,\mu\nu}$

Advantages of the π^0 Primakoff Production off an Electron

PrimEx-II:
$$\gamma + {}^{28}Si \rightarrow \pi^0 + {}^{28}Si$$

$$\frac{d\sigma_{\text{Pr}}}{d\Omega} = \boxed{\Gamma_{\gamma\gamma}} \frac{8\alpha Z^2}{m_{\pi}^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q)|^2 \sin^2 \theta_{\pi}$$

Main challenges for the nuclear target:

- Nuclear backgrounds
- Nuclear charge form factor
- No recoil detection

Advantages of an electron target:

- Eliminate all nuclear backgrounds
- Point-like target
- Recoiled electron detection

$d\sigma_{ m Pr}$ _	$= \Gamma_{yy} \frac{8\alpha}{3} \frac{\beta^3 E^4}{24} \sin^2 \theta$
$\overline{d\Omega}$	$= 1_{\gamma\gamma} \frac{1}{m_{\pi}^3} \frac{1}{O^4} \sin \theta_{\gamma}$

Measurement	Reaction	$rac{E_{th}}{ ext{(GeV)}}$
$\Gamma(\pi^0 \to \gamma \gamma)$	$\gamma + e \rightarrow \pi^0 + e$	18.0
$F(\pi^0 \to \gamma^* \gamma)$	$e + e \rightarrow \pi^0 + e + e$	18.1

BSM Physics in Dark Sector

Dark Sector

- New gauge forces, bosons and fermions beyond SM.
- The stability of dark matter can be explained by the dark charge conservation.

Where to Search for Dark Matter?

Motivation for sub-GeV New Physics

△ M81dwB

10-1

 $R/R_{0.3}$

10-2

If these anomalies are interpreted in terms of new physics, all point to new forces with mediator particles in the MeV–GeV mass range!

Landscape of BSM Physics Search

arXiv:1504.04855

Search for New Scalar and Pseudoscalar via Primakoff Effect

$$\mathcal{L}_{\text{eff}} \supset \frac{c_{\gamma}}{4\Lambda} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

$$\frac{d\sigma_{Pr}}{d\Omega} \sim \frac{c_{\gamma}^2 \alpha Z^2}{8\pi\Lambda^2} \cdot \frac{\beta^3 E^4}{Q^4} \cdot |F_{e.m.}(Q)|^2 sin^2 \theta_a$$

The Primakoff signal dominates in the forward angles

Minimizing the QCD backgrounds

Favorable experimental condition:

- A high energy beam
- A high Z nuclear target

PrimEx I

Summary

- The distinguishable features of Primakoff effect make it a great experimental tool for SM tests and BSM physics searches.
- The current JLab Primakoff program at 6&12 GeV has been in progress. The published PrimEx result on the π⁰ lifetime provides a stringent test of low-energy QCD. The future 24 GeV beam will greatly improve measurements of more massive particles, such as η'.
- ◆ A 24 GeV beam will offer new opportunities for the Primakoff physics:
 - ✓ New generation of Primakoff experiments on $\Gamma(\pi^0 \to \gamma\gamma)$ and $F(\pi^0 \to \gamma^*\gamma)$ off an electron target.
 - ✓ Search for new sub-GeV gauge bosons (scalars and pseudoscalars).