The Jefferson Lab Eta Factory (JEF) experiment Simon Taylor / JLab for the GlueX collaboration

- $\ensuremath{\,^{\bullet}}$ Physics channels involving η decays
- CEBAF and the GlueX detector
- Upgrade to standard GlueX equipment: PbWO₄ crystals
- Hardware status

η as a probe for QCD and Beyond Standard Model physics

- Goldstone boson due to spontaneous breaking of QCD chiral symmetry
 - Bridge our understanding of low-energy hadron dynamics and underlying QCD
- Decay width $\Gamma_n=1.3$ keV is narrow
 - Width << experimental resolution, aids in analysis
- Eigenstate of P, C, CP, and G: I^G(J^{PC})=0⁺(0⁻⁺)
 - Study violations of discrete symmetries
- Decays are flavor-conserving reactions effectively free of SM backgrounds for new physics searches...
- Review article: L. Gan, et al., "Precision tests of fundamental physics with η and η' mesons", Phys.Rept. 945 (2022) 1-105 https://arxiv.org/abs/2007.00664

Physics channels

- Search for a leptophobic dark boson (B)
 - ~0.14 < M_B < ~0.55 GeV</p>
 - $B \rightarrow \pi^0 \gamma$, ...

- Search for a dark scalar mediator (S)
 - S→γγ, ...

- Probe interplay of VMD and scalar resonances in Chiral Perturbation Theory $\rightarrow O(p^6)$ LEC's in the chiral Lagrangian
- Constrain the light quark mass ratio

 Directly constrain Cviolating/Parity-conserving (CVPC) new physics

Mode	Branching Ratio	Physics highlight
$\gamma + B'$	beyond SM	leptophobic dark boson
$\pi^0 2\gamma$	$(2.55 \pm 0.22) \times 10^{-4}$	$\chi \mathrm{PT} \mathrm{ at} \ \mathcal{O}(p^6)$
$3\pi^0$	$(32.57 \pm 0.21)\%$	$m_u - m_d$
$\pi^+\pi^-\pi^0$	$(23.02 \pm 0.25)\%$	$m_u - m_d$, CV
3γ	$< 1.6 \times 10^{-5}$	CV, CPV

Branching ratios from P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.

Light quark mass ratio

- Quark masses are fundamental QCD parameters
 - $\eta \rightarrow \pi^+\pi^-\pi^0$ provides direct way to constrain light quark masses and source term for isospin violation
- QCD Lagrangian: isospin violation amplitude A proportional to $m_{\mu} m_{d}$

• Quark mass ratio:
$$Q^{2} = \frac{m_{s}^{2} - \hat{m}_{u}^{2}}{m_{d}^{2} - m_{u}^{2}}, \quad \hat{m} = \frac{m_{u} + m_{d}}{2}$$
• Decay width:

$$\Gamma(\eta \to 3\pi) \propto \int ds \, du |\mathcal{A}_{\eta \to 3\pi}(s, t, u)|^{2} \propto \frac{1}{Q^{4}}$$
E. Ambrosino, et al.

 $A = (m - m_1)A_1 + \alpha A_2$ small

• Measure Dalitz distribution for $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ $\Gamma(X,Y) \propto 1 + aY + bY^{2} + dX^{2} + fY^{3} + hX^{2}Y + \cdots$ $X = \sqrt{3}\frac{T_{+} - T_{-}}{Q_{\eta}}$ $X = \sqrt{3}\frac{T_{+} - T_{-}}{Q_{\eta}}$ $Y = \frac{3T_{0}}{Q_{\eta}} - 1$ $Q_{\eta} = m_{\eta} - 2m_{\pi^{+}} - m_{\pi^{0}}$ $Q_{\eta} = m_{\eta} - 2m_{\pi^{+}} - m_{\pi^{0}}$ $M = \frac{3T_{0}}{Q_{\eta}} - 1$ $Q_{\eta} = m_{\eta} - 2m_{\pi^{+}} - m_{\pi^{0}}$ $M = \frac{3T_{0}}{Q_{\eta}} - 1$

• Dalitz plot parameters (a, b, d, ...): compute from theory (χ PT, dispersion analysis)

JHEP

Light quark mass ratio: current status

C-violating/parity-conserving (CVPC) physics

C(charge conjugation)-violation known only in weak interactions

- Strong and EM forces conserve C-parity
- Focus on $\eta \rightarrow 3\gamma$:
 - Bernstein, Feinberg, and Lee: new C- and T-violating, Pconserving interaction Phys.Rev., 139, B1650(1965)
 - Theoretical estimate: BR(η→3γ)<10⁻² Tarasov, Sov.J.Nucl.Physics.,5,445(1967)
 - SM scale: $BR(\eta \rightarrow 3\gamma) < 10^{-19}$ via P-violating weak

interaction

P. Herczeg, Production and Decay of Light Mesons Proc. Int. Workshop, Paris, France, ed P Fleury (1988) p16

• Current upper limit: $BR(\eta \rightarrow 3\gamma) < 1.6 \times 10^{-5}$

P.A. Zyla et al., Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

JEF: expect improvement by 1 order of magnitude....

- Proposed light pseudoscalar (a) mediators between Standard Model and Dark Matter
 - Dominant coupling to gluons

Search channels:

- $\eta(') \rightarrow \pi \pi a$, where $a \rightarrow \gamma \gamma$, e^+e^- , $\mu^+\mu^-$
- $\eta' \rightarrow \pi \pi a$, where $a \rightarrow \pi^+ \pi^- \gamma$, 3π
- $\eta' \rightarrow \eta \pi^0 a$, where $a \rightarrow \gamma \gamma$, e^+e^- , $\mu^+\mu^-$

Phys.Rev.D 105 (2022) 5, 052007

Physics channels

Search for a leptophobic dark boson (B)
 ~0.14 < M_B < ~0.55 GeV

violating/Parity-conserving

• $B \rightarrow \pi^0 \gamma$, ...

Directly constrain C-

(CVPC) new physics

- Search for a dark scalar mediator (S)
 - **●** S→γγ, ...

- Probe interplay of VMD and scalar resonances in Chiral Perturbation Theory $\rightarrow O(p^6)$ LEC's in the chiral Lagrangian
- Constrain the light quark mass ratio

Mode	Branching Ratio	Physics highlight
$\gamma + B'$	beyond SM	leptophobic dark boson
$\pi^0 2\gamma$	$(2.55 \pm 0.22) \times 10^{-4}$	$\chi \mathrm{PT} \mathrm{~at~} \mathcal{O}(p^6)$
$3\pi^0$	$(32.57 \pm 0.21)\%$	$m_u - m_d$
$\pi^+\pi^-\pi^0$	$(23.02\pm 0.25)\%$	$m_u - m_d$, CV
3γ	$< 1.6 \times 10^{-5}$	CV, CPV

Branching ratios from P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.

Rare decay: $\eta \rightarrow \pi^0 \gamma \gamma$

- Unique probe for high order Chiral Perturbation Theory (χ PT)
 - Tree level amplitudes O(p²) and O(p⁴) vanish
 - First sizeable contributions to η→π⁰γγ : two O(p⁶) counter-terms in chiral Lagrangian Ametller, Bijnens, Bramon, and Cornet, Phys. Lett., B276, 185 (1992)
 - Access two Low Energy Constants

E. Oset, J.R. Pelaez, and L. Roca, Phys.Rev.D77:073001,2008

• Shape of Dalitz distribution (M_{yy}) sensitive to role of scalar resonances

Gasser, Leutwyler 1984; Ecler, Gasser, Pich, de Rafael 1989; Donoghue, Ramirez, Valencia 1989

Portal to dark sector: B-boson

The JEF experiment

Extension to $\eta' \rightarrow \pi^0 \gamma \gamma$

- Recent theory developments: Balytzkyi, arXiv:1811.01402
 - VMD + (Chiral Perturbation theory or Linear sigma model) (highly suppressed)
 - Result $\Gamma(\eta' \rightarrow \pi^0 \gamma \gamma) = 1.6-3.0 \text{ keV}$ disagrees with BESIII result $\Gamma(\eta' \rightarrow \pi^0 \gamma \gamma) \approx 0.64 \text{ keV}$

Potential to increase mass range for B search

CEBAF and the GlueX detector

First look at $\gamma p \rightarrow p \pi^0 \gamma \gamma$

Resolution of Forward Calorimeter (FCAL) not sufficient to resolve rare decay channel...

Forward Calorimeter upgrade: PbWO₄ insert

The JEF experiment

Lead tungstate calorimeter prototype

- Prototype: 12x12 PbWO₄ array
 - Successfully tested and used for the PrimEx-η experiment in 2019 and in fall 2021
 - NIM article:

https://doi.org/10.1016/j.nima.2021.165683

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Available online 24 July 2021, 165683 In Press, Journal Pre-proof (?)

Electromagnetic calorimeters based on scintillating lead tungstate crystals for experiments at Jefferson Lab 🖈

Hardware status

- PbWO₄ crystal Quality Assurance:
 - Surface, clarity, color, dimensions, light transmission, light yield

- Module assembly
- PMT divider & amplifier

- Fabrication and Installation
 - Finalizing engineering design for frame
 - Finalizing design of crystal cooling system
 - Modules ready for installation in 2023
 - Planned installation duration: 6 months

Module fabrication

 Enormous progress due to help from undergraduate students from GWU, Lamar University, Northern VA Community College, and UNCW

Fabricated modules

- η decays allow access to many interesting physics channels:
 - Testing the role of scalar dynamics in chiral perturbation theory for $\eta \rightarrow \pi^0 \gamma \gamma$
 - Searching for dark sector B-boson
 - Searching for CVPC interactions
 - Measurement of light quark mass ratio
- Rare decay channel requires upgrade to Forward Calorimeter
 - Shipments of PbWO₄ crystals coming to JLab
 - Quality assurance procedures in place
 - Modules under construction
- Data taking with upgraded Forward Calorimeter expected in 2024

http://www.gluex.org/thanks.html

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

