

Investigation of hadronic exit channels of the π^-+C reaction at an incident momentum of 0.7 GeV/c

QNP 2022, 8th September

Fatima Hojeij IJCLab HADES Collaboration

QCD phase diagram studies

HADES objectives :

 Study hadronic matter at moderate temperature and high baryonic density.

> A+A: 1-3A GeV $\sqrt{s_{NN}}$ =2-2.4 GeV (compl. to LHC, SPS, RHIC,...)

 Microscopic structure of baryon dominated matter
 Role of baryonic resonances (excited states of nucleons), hyperons

> Δ(1232) N*(1440) N*(1520) N*(1535) Etc ...

The heavy ion context

In heavy-ion collisions at a few AGeV, pion dynamics crucial to describe the evolution of the collision :

- ✓ real pions copiously produced $(NN \to NN\pi, \pi + N \to N^*/\Delta)$
- ✓ NN interaction driven by pion exchange

- ✓ p+A or A+A at $\sqrt{s_{NN}}$ < 2.6 GeV Δ(1232) region (p_π =250 MeV/c) wellknown
- P+A or A+A at √s_{NN} > 2.6 GeV, information on higher lying resonances needed : N(1520) region p_π ~ 700 MeV/c has not been explored.

[D. R. Marlow et al., Phys. Rev. C30, 1662 (1984), Pion cattering From C and Ca at 800-MeV/c.]

- 300<p<500 MeV/c : few measurements $(\pi, \pi x)$ or $(\pi, \pi \pi x)$ (LAMPF, TRIUMF, KEK)
- p>500 MeV/c : only total cross sections (Saturne-1, NIMROD, BNL) and differential elastic cross sections (KEK).

P+A (SIS18 & SIS100) or A+A (SIS100)

[S. Teis et al. Pion production in heavy ion collisions at sis energies. Z. Phys.,A356 :421, 1997.]

Fatima Hojeij, IJCLab

1st investigation of the 2nd resonance region with HADES :

 $\Box \quad \pi^- + C \rightarrow e^+ e^- + X @ 0.685 \text{ GeV/c consistent with quasi-free process} : \pi^- + p \rightarrow e^+ e^- + n.$

e+/e-: no rescattering very different for hadronic channels [HADES collab., to be submitted]

Our aim :

Investigate different hadronic exit channels in π^2 + ¹²C reaction for 2nd resonance region :

Information on pion-nucleus dynamics in the second resonance region (N1520).

- study reaction mechanisms: quasi-elastic, rescattering, pion absorption,...
- Sensitive test INCL cascade and transport models (Smash, RQMD, GIBUU...).
- INCL is used in toolkits for the simulation of the passage of particles through matter (Geant).
- SMASH, rQMD & GIBUU are used for the description of heavy ion collisions.
- PLUTO event generator is also used for quasi-free simulations.

HADES

High Acceptance DiElectron Spectrometer (GSI, Darmstadt)

Experiments (2004-2014)

✤ Hadronic matter studies :

C+C	1 & 2 AGeV,
Ar+KCl	1.75 AGeV
Au+Au	1.25 AGeV
Ag+Ag	1.65 AGeV

Elementary reactions :

р+ р	1.25, 2.2, 3.5 GeV,
d+p	1.25 GeV/nucléon
π^-+CH_2/C	0.7 GeV/c

Cold matter :

p+Nb	3.5 GeV,		
π ⁻ +C/W	1.7 GeV/c		

- Acceptance: Azimuthal angles 85% (6 sectors) polar angles: 18° - 85°
- ▶ **Detected particles:** e^{\pm} , p, π^{\pm} , K^{\pm}
- ▶ Tracking: MDC
- ▶ e^{\pm} identification with RICH, TOF/PreShower
- ▶ p, π^{\pm} , K^{\pm} identification TOF-Tracking

Pion beam experiment @ GSI

Benchmark of models

Participant-spectator model : PLUTO	IntraNuclear Cascade model : INCL	SMASH & rQMD & GIBUU		
^{12}C = participant off-shell proton + spectator on-shell 11B	^{12}C = (on-shell nucleons) nucleon Fermi gas	¹² C =(on-shell nucleons) nucleon Fermi gas ?		
π - interact with an off-shell proton moving with momentum distribution in agreement with $(e, e'p)$ ⁽¹⁾	π - + p (moving and on-shell) \rightarrow π - + p + X	$\pi^- + p$ moving and on-shell → $\pi^- + p + X$		
Further interaction of particles not taken into account	Further interaction of particles taken into account, depending on cross section Nuclear mean field is acting on products	inclastic channels are included		
Only elastic channels included (by choice).	inelastic channels are also included Only Δ(1232) resonance is included	All baryonic resonances included		

Pluto is a Monte Carlo <u>simulation framework</u> developed by the HADES collaboration for heavy ion and hadronic-physics reactions.

Simulations processed in GEANT; comparison data with simulations in acceptance.

(1) [K. Nakamura et al., Nuclear Physics A, Volume 268, Issue 3, 21 September 1976, Pages 381-407]

PID & Normalization

Velocity Vs Momentum

Particle identification is done using

Cuts

on momentum-velocity correlation $p = \beta \times m/\sqrt{(1 - \beta^2)}$

Data normalisation (counts -> mb/unit) :

Using measurements on C and CH2 targets and known π^- + p elastic scattering cross-section, global systematic error = 4%.

statistical errors are negligible, point to point systematic errors (diff dist) : 5%

Main channels in π^- + 12

- $\pi^- + p \rightarrow \pi^- + p$ quasi-elastic scattering σ = 17.8 mb (SAID)
- $\pi^- + p \rightarrow \pi^0 + n$ charge exchange $\sigma = 10$ mb (SAID)

□ Inelastic (pion production)

• $\pi^- + p \rightarrow n + \pi^- + \pi^+ \sigma = 6.1 \text{ mb}$

[HADES collab., Phys.Rev. C102 (2020) no.2, 024001]

- $\pi^- + p \Box p + \pi^- + \pi^0 \sigma = 3.3 \text{ mb}$ (idem)
- $\pi^- + n \to p + \pi^- + \pi^- \sigma = 0.4 \text{ mb}$
- \Box Multi-step: rescattering $\pi N \rightarrow \pi N$, NN \rightarrow NN
- \square π -N $\rightarrow \pi$ N followed by NN \rightarrow NN π kinematically suppressed

 \rightarrow two-pion production occurs mainly in the same step, via $\pi N \rightarrow \pi \pi N$

Main contribution from s-channel N* excitations, N* $\rightarrow \pi\,\Delta,~\sigma N,\,\rho N$

Selection of quasi-elastic channel

Fatima Hojeij, IJCLab

a.u. preliminary data da/d(δ(φ)) [mb] INCL 0.04 PLUTO SMASH rQMD GIBUU 0.02 150 200 250 δ(φ)

 $p\pi^-$ « QE selection » : Momentum correlation + coplanarity condition : $150^{\circ} < \Delta \varphi < 210^{\circ}$

- SMASH & rQMD overestimate $p\pi^-$ channel.
- INCL : underestimates $p\pi^-$ channel espacially inelastic channel.
- GIBUU reproduces quite well $p\pi^{-}$ total cross section with difference in yields (« QE » and inelastic).

$p\pi^-$: "quasi – elastic"

- Ang. distrib. different from free π^- +p elastic scattering.
- INCL reproduces well pion angular distribution.
- PLUTO closer to free π^- +p data especially for high angles.
- Transport models have a too broad angular distribution.

- Data and transport models: missing mass close to ${}^{11}B$ mass.
- Missing mass shifted in INCL.

Distributions are normalized to the surface in order to compare shapes.

Exclusive hadronic channels in pim+C 0.69 GeV/c

 $p\pi^+$

- $p\pi^+$ is necessarily an inelastic channel with two steps.
- Yields much lower than for $p\pi^-$ inelatic.
- Shifted missing mass w.r.t $p\pi^-$ inelastic .
- No clear sign of Δ ++ in data.

(a)
$$\pi^{-} + p \rightarrow \pi^{-} + p$$

 $\pi^{-} + p \rightarrow n + \pi^{-} + \pi^{+}$
(b) $\pi^{-} + p \rightarrow \pi^{0} + n$
 $\pi^{0} + p \rightarrow p + \pi^{-} + \pi^{+}$
(c) $\pi^{-} + p \rightarrow \pi^{0} + p + \pi^{-}$
 $\pi^{0} + p \rightarrow n + \pi^{+}$

Two pion production (1)

- π^{-} and π^{+} play a symmetrical role. Dominance of (a) and (b).
- INCL++ does a good job

Exclusive hadronic channels in pim+C 0.69 GeV/c

0.5

0.2 P^{CM}_{pip} [GeV/c]

—GIBUU

Two pion production (2)

 $pp\pi^-$

Pion absorption investigation

Inv. mass very similar in the 3 channels, no sign of π absorption ? Better investigation of pion absorption would need neutron reconstruction

Cross sections

π [−] + ¹² C → reaction 2-3 charged particles channels	σ^{acc}_{data} [mb]	σ ^{acc} SMASH	σ ^{acc} rQMD [mb]	σ ^{acc} GIBUU [mb]	σ ^{acc} [mb]
$p\pi^-$ quasi- elastic	3.05749	12.6985	6.96586	3.44757	2.61393
$p\pi^-$ inelastic	3.35684	4.83481	7.45256	1.76097	2.15597
$\pi^{-}\pi^{-}$	0.229554	0.187058	0.438986	0.0529949	0.324116
$\pi^-\pi^+$	1.06115	2.17662	2.39893	0.459961	1.46397
$\pi^+\pi^+$	0.00207372	0.00755551	0.00636384	0.000245144	0.00305625
$p\pi^+$	0.320214	0.774002	1.12059	0.140976	0.300638
рр	1.8327	3.30951	6.35023	1.19376	1.06719
р $\pi^-\pi^+$	0.0463039	0.134989	0.202082	0.021943	0.0525704
p π ⁻ π ⁻	0.0646787	0.0596407	0.16292	0.0228274	0.0536891
p p π ⁻	0.16887	0.617297	1.07159	0.192891	0.153924
ррр	0.047972	0.082285	0.300865	0.039017	0.0238212

Conclusion

- Study of different hadronic channels of π^-+^{12} C reaction @0.69 GeV/c measured with HADES
- Sensitive test of implementation of different processes: quasi-elastic, pion production, absorption in INCL++ and transport models (RQMD,SMASH, GIBUU)
 - Large dispersion of model predictions:
 - 1. INCL++ does a rather good job for channels with a detected pion in contrast to transport models.
 - 2. Improvements needed for transport models.

Outlook:

Access to Short Range Correlation Effects in Quasi-elastic process ? Estimate total cross sections.

Neutron reconstruction to test pion absorption.

Backup

Cross sections

 $\begin{array}{l} \sigma_{p+\pi^- \to p\pi^-} &= {\rm 17.8 \ mb} \\ \sigma_{p+\pi^- \to n\pi^0} &= {\rm 10 \ mb} \\ \sigma_{p+\pi^- \to n\pi^-\pi^+} &= {\rm 6.21 \ mb} \\ \sigma_{n+\pi^- \to n\pi^-} &= {\rm 12.4 \ mb} \\ \sigma_{n+\pi^- \to p\pi^-\pi^-} &= {\rm 0.37 \ mb} \end{array}$