Intermediate $\pi^0 \pi^{\pm}$ production channels off nucleons in the Deuteron with the A2 Experiment

Sebastian Lutterer

University of Basel

QNP2022 - The 9th International Conference on Quarks and Nuclear Physics

September 06, 2022

Sebastian Lutterer (University of Basel)

QNP 2022

This talk is dedicated to Bernd Krusche (1956 - 2022).

Thank you for everything!

315

Overview

1 Motivation

2 Theory

Analysis

5 Results

6 Conclusion

Results from Photoabsorption Experiments

(Source: B. Krusche, P. Pedroni et al., various publications)

$$\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$$

$$\gamma n(p) \longrightarrow \pi^{-} \pi^{0} p(p)$$

◆□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$$

 \hookrightarrow 4 branches:

 $\gamma n(p) \longrightarrow \pi^{-} \pi^{0} p(p)$ \hookrightarrow 4 branches:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ のQ@

$$\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$$

$$\hookrightarrow$$
 4 branches:

direct

 $\gamma n(p) \longrightarrow \pi^{-} \pi^{0} p(p)$ \hookrightarrow 4 branches: direct

5 / 18

Reaction Branches

$$\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$$

$$\hookrightarrow$$
 4 branches:

$$\blacktriangleright$$
 via $\gamma p \longrightarrow \pi^0 \Delta^+$

$$\gamma n(p) \longrightarrow \pi^{-} \pi^{0} p(p)$$

 \hookrightarrow 4 branches:
 \blacktriangleright direct

• via
$$\gamma n \longrightarrow \pi^0 \Delta^0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ のQ@

Reaction Branches

$$\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$$

$$\hookrightarrow$$
 4 branches:

$$\begin{array}{c} \bullet \ \ \text{via} \ \ \gamma p \longrightarrow \pi^0 \Delta^+ \\ \Delta^+ \longrightarrow \pi^+ n \end{array}$$

$$\gamma n(p) \longrightarrow \pi^{-} \pi^{0} p(p)$$

 \hookrightarrow 4 branches:
 \blacktriangleright direct
 \flat via $\gamma n \longrightarrow \pi^{0} \Delta^{0}$

$$\Delta^0 \longrightarrow \pi^- p$$

Sebastian Lutterer (University of Basel)

September 06, 2022 5 / 18

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ のQ@

Reaction Branches

$$\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$$

 \hookrightarrow 4 branches:

direct

► via
$$\gamma p \longrightarrow \pi^0 \Delta^+$$

 $\Delta^+ \longrightarrow \pi^+ n$
► via $\gamma p \longrightarrow \pi^+ \Delta^0$

 $\gamma n(p) \longrightarrow \pi^{-} \pi^{0} p(p)$ $\hookrightarrow 4 \text{ branches:}$ $\bullet \text{ direct}$ $\bullet \text{ via } \gamma n \longrightarrow \pi^{0} \Delta^{0}$ $\Delta^{0} \longrightarrow \pi^{-} p$ $\bullet \text{ via } \gamma n \longrightarrow \pi^{-} \Delta^{+}$

Reaction Branches

$$\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$$

 \hookrightarrow 4 branches:

► direct
► via
$$\gamma p \longrightarrow \pi^0 \Delta^+$$

 $\Delta^+ \longrightarrow \pi^+ n$
► via $\gamma p \longrightarrow \pi^+ \Delta^0$
 $\Delta^0 \longrightarrow \pi^0 n$

 $\gamma n(p) \longrightarrow \pi^{-} \pi^{0} p(p)$ $\hookrightarrow 4 \text{ branches:}$ $\bullet \text{ direct}$ $\bullet \text{ via } \gamma n \longrightarrow \pi^{0} \Delta^{0}$ $\Delta^{0} \longrightarrow \pi^{-} p$ $\bullet \text{ via } \gamma n \longrightarrow \pi^{-} \Delta^{+}$ $\Delta^{+} \longrightarrow \pi^{0} p$

Reaction Branches

$$\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$$

 \hookrightarrow 4 branches:

► direct
► via
$$\gamma p \longrightarrow \pi^0 \Delta^+$$

 $\Delta^+ \longrightarrow \pi^+ n$
► via $\gamma p \longrightarrow \pi^+ \Delta^0$
 $\Delta^0 \longrightarrow \pi^0 n$
► via $\gamma p \longrightarrow \rho^+ n$

 $\begin{array}{l} \gamma n(p) \longrightarrow \pi^{-} \pi^{0} p(p) \\ \hookrightarrow \ 4 \ \text{branches:} \\ \bullet \ \text{direct} \\ \bullet \ \text{via} \ \gamma n \longrightarrow \pi^{0} \Delta^{0} \\ \Delta^{0} \longrightarrow \pi^{-} p \\ \bullet \ \text{via} \ \gamma n \longrightarrow \pi^{-} \Delta^{+} \\ \Delta^{+} \longrightarrow \pi^{0} p \\ \bullet \ \text{via} \ \gamma n \longrightarrow \rho^{-} p \end{array}$

Sebastian Lutterer (University of Basel)

Reaction Branches

$$\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$$

 \hookrightarrow 4 branches:

► direct
► via
$$\gamma p \longrightarrow \pi^0 \Delta^+$$

 $\Delta^+ \longrightarrow \pi^+ n$
► via $\gamma p \longrightarrow \pi^+ \Delta^0$
 $\Delta^0 \longrightarrow \pi^0 n$
► via $\gamma p \longrightarrow \rho^+ n$
 $\rho^+ \longrightarrow \pi^+ \pi^0$

 $\begin{array}{l} \gamma n(p) \longrightarrow \pi^{-} \pi^{0} p(p) \\ \hookrightarrow \ 4 \ \text{branches:} \\ \bullet \ \text{direct} \\ \bullet \ \text{via} \ \gamma n \longrightarrow \pi^{0} \Delta^{0} \\ \Delta^{0} \longrightarrow \pi^{-} p \\ \bullet \ \text{via} \ \gamma n \longrightarrow \pi^{-} \Delta^{+} \\ \Delta^{+} \longrightarrow \pi^{0} p \\ \bullet \ \text{via} \ \gamma n \longrightarrow \rho^{-} p \\ \rho^{-} \longrightarrow \pi^{-} \pi^{0} \end{array}$

Reaction Branches

$$\gamma p(n) \longrightarrow \pi^+ \pi^0 n(n)$$

 \hookrightarrow 4 branches:

$\gamma n(p) \longrightarrow \pi^- \pi^0 p(p)$
\hookrightarrow 4 branches:
 direct
• via $\gamma n \longrightarrow \pi^0 \Delta^0$
$\Delta^0 \longrightarrow \pi^- p$
• via $\gamma n \longrightarrow \pi^- \Delta^+$
$\Delta^+ \longrightarrow \pi^0 p$
► via γp → p p
$ ho^- \longrightarrow \pi^- \pi^0$

Reaction Branches

The ρ channel is present for the $\pi^{\pm}\pi^{0}$ final state, *not* for $\pi^{0}\pi^{0}$ (isospin conservation).

Theory The MAID Model

The MAID Model

RESONANCE TERMS

Mainz Unitary Isobar Model

- \hookrightarrow Common background
- \hookrightarrow Born terms
- \hookrightarrow Resonances (****)

simulated up to 1.5 GeV

(Source: H. Arenhövel and A. Fix, Eur. Phys. J.

A, vol. 25, pp. 115135, 2008)

・ロト ・ 日本 ・ ヨ ト ・ ヨ ト ・ クタマ

Theory The MAID Model

The MAID Model

RESONANCE TERMS

Mainz Unitary Isobar Model

- \hookrightarrow Common background
- \hookrightarrow Born terms
- \hookrightarrow Resonances (****)
- simulated up to 1.5 GeV

$$\hookrightarrow \gamma N \longrightarrow \pi \pi N$$

(Source: H. Arenhövel and A. Fix, Eur. Phys. J.

A, vol. 25, pp. 115135, 2008)

QNP 2022

・ロト ・ 日本 ・ ヨ ト ・ ヨ ト ・ クタマ

Theory The MAID Model

The MAID Model

RESONANCE TERMS

Mainz Unitary Isobar Model

- \hookrightarrow Common background
- \hookrightarrow Born terms
- \hookrightarrow Resonances (****)

simulated up to 1.5 GeV

$$\hookrightarrow \gamma N \longrightarrow \pi \pi N$$

 \hookrightarrow (6), (7) and (20) forbidden for $\pi^0\pi^{\pm}$

(Source: H. Arenhövel and A. Fix, Eur. Phys. J. A, vol. 25, pp. 115135, 2008)

QNP 2022

・ロト ・ 日本 ・ ヨ ト ・ ヨ ト ・ クタマ

MAMI

Experimental Set-up - MAMI

(Source: A2 Collaboration)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■□ のQ@

Experimental Set-up - Crystal Ball/TAPS

(Source: A2 Collaboration)

Analysis - General steps

◆□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Analysis - General steps

Pre-select for number of charged/neutral particles \hookrightarrow

9 / 18

Analysis - General steps

$\,\hookrightarrow\,$ Pre-select for number of charged/neutral particles

 \hookrightarrow Reconstruct π^0 from 2 photon candidates

E SQC

(4) E > (4) E >

Analysis - General steps

- $\,\hookrightarrow\,$ Pre-select for number of charged/neutral particles
- $\,\hookrightarrow\,$ Reconstruct π^0 from 2 photon candidates
- $\,\hookrightarrow\,$ For $\pi^+\text{-channel:}$ identify neutron candidate

315

▶ ▲ 王

Analysis - General steps

- \hookrightarrow Pre-select for number of charged/neutral particles
- \hookrightarrow Reconstruct π^0 from 2 photon candidates
- For π^+ -channel: identify neutron candidate \hookrightarrow
- Identify charged particles from PID-energy or TAPS time-of-flight \hookrightarrow

ELE NOR

Analysis - General steps

- \hookrightarrow Pre-select for number of charged/neutral particles
- \hookrightarrow Reconstruct π^0 from 2 photon candidates
- For π^+ -channel: identify neutron candidate \rightarrow
- Identify charged particles from PID-energy or TAPS time-of-flight \hookrightarrow
- \leftrightarrow Apply kinematic cuts (π^0 -mass, missing mass, coplanarity)

ELE DOG

Analysis - General steps

- \hookrightarrow Pre-select for number of charged/neutral particles
- \hookrightarrow Reconstruct π^0 from 2 photon candidates
- \hookrightarrow For π^+ -channel: identify neutron candidate
- Identify charged particles from PID-energy or TAPS time-of-flight \hookrightarrow
- \leftrightarrow Apply kinematic cuts (π^0 -mass, missing mass, coplanarity)
- \hookrightarrow Invariant mass fits $\pi\pi$. $N\pi^0$. $N\pi^{\pm}$

ELE DOG

Analysis - General steps

- \hookrightarrow Pre-select for number of charged/neutral particles
- \hookrightarrow Reconstruct π^0 from 2 photon candidates
- \hookrightarrow For π^+ -channel: identify neutron candidate
- Identify charged particles from PID-energy or TAPS time-of-flight \hookrightarrow
- \leftrightarrow Apply kinematic cuts (π^0 -mass, missing mass, coplanarity)
- \hookrightarrow Invariant mass fits $\pi\pi$. $N\pi^0$. $N\pi^{\pm}$
- Determine cross sections for all reaction branches \hookrightarrow

Analysis - General steps

- \hookrightarrow Pre-select for number of charged/neutral particles
- \hookrightarrow Reconstruct π^0 from 2 photon candidates
- \hookrightarrow For π^+ -channel: identify neutron candidate
- Identify charged particles from PID-energy or TAPS time-of-flight \hookrightarrow
- \leftrightarrow Apply kinematic cuts (π^0 -mass, missing mass, coplanarity)
- \hookrightarrow Invariant mass fits $\pi\pi$. $N\pi^0$. $N\pi^{\pm}$
- Determine cross sections for all reaction branches \rightarrow

ELE NOR

Analysis - General steps

- \hookrightarrow Pre-select for number of charged/neutral particles
- \hookrightarrow Reconstruct π^0 from 2 photon candidates
- \hookrightarrow For π^+ -channel: identify neutron candidate
- Identify charged particles from PID-energy or TAPS time-of-flight \hookrightarrow
- \leftrightarrow Apply kinematic cuts (π^0 -mass, missing mass, coplanarity)
- \hookrightarrow Invariant mass fits $\pi\pi$. $N\pi^0$. $N\pi^{\pm}$
- Determine cross sections for all reaction branches \rightarrow

Not enough information for full kinematic reconstruction!

Without Fermi momentum:

ELE DQC

イロト イヨト イヨト イヨ

Without Fermi momentum: $ec{p}_{\gamma} + ec{p}_{T} = ec{p}_{\pi^{0}} + ec{p}_{\pi^{+}} + ec{p}_{R}$

10 / 18

Without Fermi momentum:

$$ec{p}_{\gamma}+ec{p}_{ au}=ec{p}_{\pi^0}+ec{p}_{\pi^+}+ec{p}_R\ ec{p}_1:=ec{p}_{\gamma}+ec{p}_{ au}-ec{p}_{\pi^0}=ec{p}_{\pi^+}+ec{p}_R$$

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

Without Fermi momentum:

$$egin{aligned} ec{p}_{\gamma} + ec{p}_{\mathcal{T}} &= ec{p}_{\pi^0} + ec{p}_{\pi^+} + ec{p}_R \ ec{p}_1 &:= ec{p}_{\gamma} + ec{p}_{\mathcal{T}} - ec{p}_{\pi^0} &= ec{p}_{\pi^+} + ec{p}_R \ ec{p}_2 &:= ec{p}_{\pi^+} \ ec{p}_3 &:= ec{p}_R \end{aligned}$$

ELE DQC

イロト イヨト イヨト イヨ

Without Fermi momentum:

$$egin{aligned} ec{p}_{\gamma} + ec{p}_{\mathcal{T}} &= ec{p}_{\pi^0} + ec{p}_{\pi^+} + ec{p}_R \ ec{p}_1 &:= ec{p}_{\gamma} + ec{p}_{\mathcal{T}} - ec{p}_{\pi^0} &= ec{p}_{\pi^+} + ec{p}_R \ ec{p}_2 &:= ec{p}_{\pi^+} \ ec{p}_3 &:= ec{p}_R \end{aligned}$$

Sebastian Lutterer (University of Basel)

September 06, 2022 10 / 18

315

IN A B N A B

< □ > < 円

Without Fermi momentum:

$$ec{p}_{\gamma}+ec{p}_{T}=ec{p}_{\pi^{0}}+ec{p}_{\pi^{+}}+ec{p}_{R}$$
 $ec{p}_{1}:=ec{p}_{\gamma}+ec{p}_{T}-ec{p}_{\pi^{0}}=ec{p}_{\pi^{+}}+ec{p}_{R}$
 $ec{p}_{2}:=ec{p}_{\pi^{+}}$
 $ec{p}_{3}:=ec{p}_{R}$

With Fermi momentum: approximate true solution with the minimum!
Minimal Fermi Momentum Reconstruction

Without Fermi momentum:

$$egin{aligned} ec{p}_{\gamma} + ec{p}_{T} &= ec{p}_{\pi^{0}} + ec{p}_{\pi^{+}} + ec{p}_{R} \ ec{p}_{1} &:= ec{p}_{\gamma} + ec{p}_{T} - ec{p}_{\pi^{0}} = ec{p}_{\pi^{+}} + ec{p}_{R} \ ec{p}_{2} &:= ec{p}_{\pi^{+}} \ ec{p}_{3} &:= ec{p}_{R} \end{aligned}$$

With Fermi momentum: approximate true solution with the minimum!

$$m_0^2 + m_T^2 - m_2^2 - m_3^2 + 2p_0^2 + 2p_2p_3\cos\theta_{23} - 2p_2p_{1a}\cos\theta_{1a2} - 2p_3p_{1a}\cos\theta_{1a3} = 2\sqrt{p_2^2p_3^2 + m_3^2p_2^2 + m_2^2p_3^2 + m_2^$$

Minimal Fermi Momentum Reconstruction

Without Fermi momentum:

$$ec{p}_{\gamma}+ec{p}_{T}=ec{p}_{\pi^{0}}+ec{p}_{\pi^{+}}+ec{p}_{R}\ ec{p}_{1}:=ec{p}_{\gamma}+ec{p}_{T}-ec{p}_{\pi^{0}}=ec{p}_{\pi^{+}}+ec{p}_{R}\ ec{p}_{2}:=ec{p}_{\pi^{+}}\ ec{p}_{3}:=ec{p}_{R}$$

With Fermi momentum: approximate true solution with the minimum!

$$m_0^2 + m_T^2 - m_2^2 - m_3^2 + 2p_0^2 + 2p_2p_3\cos\theta_{23} - 2p_2p_{1a}\cos\theta_{1a2} - 2p_3p_{1a}\cos\theta_{1a3} = 2\sqrt{p_2^2p_3^2 + m_3^2p_2^2 + m_2^2p_3^2 + m_2^2p_3^2} + m_2^2m_3^2 + m_2^2m_3 + m_2^2m_3^2 + m_2^2m_3^2 + m_2^2m_3^2 + m_2^2$$

Reconstructed Fermi Momentum Average

Magnitude of target momentum: π^+ channel, phase space simulation:

Magnitude of target momentum: π^- channel, phase space simulation:

(日本) (日本) (日本) (日本) (日本) (日本) (日本)

Results - Angular Differential Cross Sections - π^+ channel (preliminary)

Results - Mass Differential Cross Sections - $\pi^0\pi^+$ (preliminary)

Total Cross Sections

Results - Total Cross Sections - π^+ channel (preliminary)

Invariant Mass Analysis

MAID Model

Total Cross Sections

Results - Total Cross Sections - π^- channel (preliminary)

Invariant Mass Analysis

MAID Model

Sebastian Lutterer (University of Basel)

Results - Total Cross Sections - Systematic Errors (preliminary)

 $\pi^+\pi^0$

▲□▶▲圖▶▲圖▶▲圖▶ 週刊 のQ@

$\,\hookrightarrow\,$ Obtained differential and total cross sections for both isospin channels

212 DQC

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- $\,\hookrightarrow\,$ Obtained differential and total cross sections for both isospin channels
- $\,\hookrightarrow\,$ First time evaluation of all different intermediate channels

ELE NOR

• • • • • • • •

- \hookrightarrow Obtained differential and total cross sections for both isospin channels
- $\,\hookrightarrow\,$ First time evaluation of all different intermediate channels
- $\,\hookrightarrow\,\,\rho$ meson production plays important role in second resonance peak

ELE DOG

しょうしょうしい

- \hookrightarrow Obtained differential and total cross sections for both isospin channels
- $\,\hookrightarrow\,$ First time evaluation of all different intermediate channels
- $\,\hookrightarrow\,\,\rho$ meson production plays important role in second resonance peak
- \hookrightarrow MAID model agrees well with total cross section for $\pi^+\pi^0$

ELE DOG

化原料 化原料

- $\,\hookrightarrow\,$ Obtained differential and total cross sections for both isospin channels
- $\,\hookrightarrow\,$ First time evaluation of all different intermediate channels
- $\,\hookrightarrow\,\,\rho$ meson production plays important role in second resonance peak
- $\,\hookrightarrow\,$ MAID model agrees well with total cross section for $\pi^+\pi^0$
- $\,\hookrightarrow\,$ Full partial wave analysis may offer further insights

- \hookrightarrow Obtained differential and total cross sections for both isospin channels
- $\,\hookrightarrow\,$ First time evaluation of all different intermediate channels
- $\,\hookrightarrow\,\,\rho$ meson production plays important role in second resonance peak
- $\,\hookrightarrow\,$ MAID model agrees well with total cross section for $\pi^+\pi^0$
- $\,\hookrightarrow\,$ Full partial wave analysis may offer further insights
- $\,\hookrightarrow\,$ A further experiment should focus on reconstruction of full kinematics

- \hookrightarrow Obtained differential and total cross sections for both isospin channels
- \hookrightarrow First time evaluation of all different intermediate channels
- $\,\hookrightarrow\,\,\rho$ meson production plays important role in second resonance peak
- $\,\hookrightarrow\,$ MAID model agrees well with total cross section for $\pi^+\pi^0$
- $\,\hookrightarrow\,$ Full partial wave analysis may offer further insights
- $\,\hookrightarrow\,$ A further experiment should focus on reconstruction of full kinematics
- \hookrightarrow Demonstrated minimal Fermi momentum method successful with incomplete information

Thank you for your attention!

Photoproduction of pion pairs off nucleons

Photoproduction of pion pairs off nucleons

Photoproduction of pion pairs off nucleons

Photoproduction: photon induced reactions that produce new particles

315

N 4 E

Photoproduction of pion pairs off nucleons

Photoproduction: photon induced reactions that produce new particles

\hookrightarrow Insight into low energy QCD (scales > 1 fm)

ELE DOG

N 4 E

Photoproduction of pion pairs off nucleons

Photoproduction: photon induced reactions that produce new particles

\hookrightarrow Insight into low energy QCD (scales > 1 fm)

ELE DOG

N 4 E

Photoproduction of pion pairs off nucleons

Photoproduction: photon induced reactions that produce new particles

Nucleons: make up atomic nucleus (protons, neutrons)

 \hookrightarrow Insight into low energy QCD (scales > 1 fm)

Photoproduction of pion pairs off nucleons

Photoproduction: photon induced reactions that produce new particles

Nucleons: make up atomic nucleus (protons, neutrons)

- \hookrightarrow Insight into low energy QCD (scales > 1 fm)
- \hookrightarrow (Quasi-)free resonances of nucleons \longleftrightarrow in-medium

Photoproduction of pion pairs off nucleons

Photoproduction: photon induced reactions that produce new particles

Nucleons: make up atomic nucleus (protons, neutrons)

- ightarrow Insight into low energy QCD (scales > 1 fm)
- \hookrightarrow (Quasi-)free resonances of nucleons \longleftrightarrow in-medium

Photoproduction of pion pairs off nucleons

Photoproduction: photon induced reactions that produce new particles

Nucleons: make up atomic nucleus (protons, neutrons) *Pions*: exchange bosons for low energy QCD (effective models)

- ightarrow Insight into low energy QCD (scales > 1 fm)
- \hookrightarrow (Quasi-)free resonances of nucleons \longleftrightarrow in-medium

N 4 1 N

Photoproduction of pion pairs off nucleons

Photoproduction: photon induced reactions that produce new particles

Nucleons: make up atomic nucleus (protons, neutrons) *Pions*: exchange bosons for low energy QCD (effective models)

- \hookrightarrow Insight into low energy QCD (scales > 1 fm)
- \hookrightarrow (Quasi-)free resonances of nucleons \longleftrightarrow in-medium
- \hookrightarrow Particularly: intermediate $\rho\text{-meson}$ production

► < Ξ ► Ξ Ξ < < < </p>

Beamtime Information

Beamtime	I	II
Date	May 09	December 07
Duration	27 days	16 days
Target	LD ₂	LD ₂
Target length	(30.2 ± 0.3) mm	(47.2 ± 0.5) mm
Radiator	10 μ m Cu	Møller foil
CB Sum	300 MeV	300 MeV
Trigger	M2+ OR TAPS M2	M2+
Electron beam	(1557.5 ± 0.5) MeV	(1508.4 ± 0.5) MeV
Collimator ø	4mm	4mm
Tagger Magnet	1.89601 T	1.8321770 T
Data	414 GB	423 GB

Experimental Set-up - A2 Hall

(Source: A2 Collaboration)

Charged Particle Energy Reconstruction - "punch-through particles" Data from beamtime I, CB, recoil missing mass versus π^+ kinetic energy:

Charged Particle Energy Reconstruction - "punch-through particles" Simulated phase space channel for π^+ :

Charged Particle Energy Reconstruction - "punch-through particles" Simulated Δ^0 channel for π^+ :

Charged Particle Identification - CB

Charged Particle Identification - TAPS

Sebastian Lutterer (University of Basel)

September 06, 2022 8 / 40

Neutral Particle Identification - TAPS

Cut Ranges - π^0 mass - π^+ channel

Sebastian Lutterer (University of Basel)
Cut Ranges - π^0 mass - π^- channel

Cut Ranges - coplanarity - π^+ channel

Cut Ranges - coplanarity - π^- channel

Cut Ranges - recoil missing mass - π^+ channel

Cut Ranges - recoil missing mass - π^- channel

Charged Particle Energy - CB π^+ band structure

Charged Particle Energy - CB π^+ band structure - shifted PID

Charged Particle Energy - CB π^- smeared energy

-

Charged Particle Energy - TAPS π^+ band structure

Charged Particle Energy - TAPS π^+ band structure - shifted PID

Charged Particle Energy - CB proton band structure

 $\cos(\theta) < 0.88$

21 / 40

Charged Particle Energy - CB proton band structure - shifted PID

 $\cos(\theta) < 0.88$

 $0.88 \leq \cos(\theta)$

Charged Particle Energy - TAPS proton band structure

-

→ ▲ 第

Charged Particle Energy - TAPS proton band structure

W Reconstruction - resolution for π^+

W Reconstruction - resolution for π^-

W Reconstruction - compare methods for π^+

1 = 1 = 1 Q Q

W Reconstruction - compare methods for π^-

Kinematic Reconstruction Feasibility Cut

$$egin{aligned} \Delta &:= 16 E_1^2 [(m_3^2 - m_1^2 - m_2^2)^2 - 4 m_2^2 (E_1^2 - p_1^2 \cos^2 heta_{12})] \geq 0 \ & ext{ with } \ & \mathbf{P}_1 &:= \mathbf{P}_\gamma + \mathbf{P}_D - \mathbf{P}_{\pi^0} - \mathbf{P}_{\pi^\pm} \end{aligned}$$

$$\mathbf{P}_2 := \mathbf{P}_R$$
$$\mathbf{P}_3 := \mathbf{P}_S$$

Kinematic Reconstruction Feasibility Cut - π^+ data

Kinematic Reconstruction Feasibility Cut - MC - Δ^0

315

(4) (2) (4) (4) (4)

Energy Sum Correction

QNP 2022

Invariant Mass Fits

Example for π^+ :

 \hookrightarrow Fit on $n\pi^+$, $n\pi^0$ and $\pi^+\pi^0$ invariant masses

E SQC

イロト 不得下 イヨト イヨト

Cross sections

Angular differential cross section:

$$\frac{d\sigma^{br}}{d\Omega}(E,\cos\theta^*_{\pi\pi}) = \frac{N(E,\cos\theta^*_{\pi\pi})}{N_{\gamma}(E)\cdot\Delta\Omega\cdot\epsilon^{br}_{det}(E,\cos\theta^*_{\pi\pi})\cdot\rho_t\cdot\left(\frac{\Gamma_{\pi^0\to\gamma\gamma}}{\Gamma_{\pi^0}}\right)}$$

Mass differential cross section:

$$\frac{d\sigma^{br}}{dm_{pp'}}(E, m_{pp'}) = \sum_{\cos\theta_{\pi\pi}^*} \frac{N(E, \cos\theta_{\pi\pi}^*, m_{pp'})}{N_{\gamma}(E) \cdot \Delta m_{pp'} \cdot \epsilon_{det}^{br}(E, \cos\theta_{\pi\pi}^*) \cdot \rho_t \cdot \left(\frac{\Gamma_{\pi^0 \to \gamma\gamma}}{\Gamma_{\pi^0}}\right)}$$

Total cross section (of branch *br*):

$$\sigma^{br}(E) = \sum_{\cos\theta_{\pi\pi}^*} \frac{d\sigma^{br}}{d\Omega}(E, \cos\theta_{\pi\pi}^*) \cdot \Delta\Omega$$

313 990

イロト イヨト イヨト イヨ

Results - Angular Differential Cross Sections - π^- channel (preliminary)

Results - Mass Differential Cross Sections - $N\pi^0$ - π^+ channel (preliminary)

Results - Mass Differential Cross Sections - $N\pi^0$ - π^- channel (preliminary)

Results - Mass Differential Cross Sections - $N\pi^+$ (preliminary)

Results - Mass Differential Cross Sections - $N\pi^-$ (preliminary)

Results - Mass Differential Cross Sections - $\pi^0\pi^-$ (preliminary)

