

Physics highlights and perspectives of FAIR

QNP 2022, September 5th – 9th, 2022 Yvonne Leifels (GSI)

FAIR – Facility for Antiproton and Ion Research

Offering a broad spectrum of different research topics Covering many different facets in physics but also in applications


Milestone of the European Research Infrastructure Roadmap (ESFRI)

Top-priority of the nuclear physics community

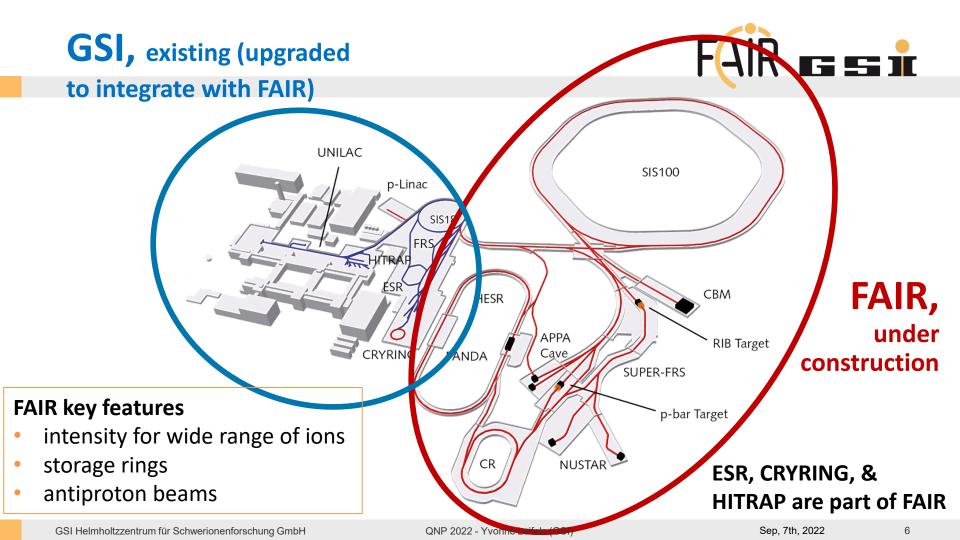
Objective: Creating extreme conditions existing in universe with heavyion accelerators... ... to answer fundamental questions:

Synthesis of chemical elements in the cosmos

Building blocks of life: Production of carbon and oxygen in stars

Neutron star mergers: equation of state, strong force, neutron rich nuclei

Matter in the interior of Earth and of large planets



High-performance and scientific computing, big data, green IT

Space radiation protection, unique facility for simulation, collaboration with ESA

Development of nuclear clock: Promising candidate thorium-229 Novel applications for tumor and nontumor diseases

FAIR accelerators

SIS100

- rigidity: 100 Tm
- super-conducting
- accelerating intermediate charge states of HIC
- cryogenic UHV system
 protops: 2 x 10¹³/ov 20 Col
- protons: 2 × 10¹³/cy, 29 GeV
- U²⁸⁺ : 5 × 10¹¹ /cy, 2.7 GeV/u U⁹²⁺ : 10¹⁰ /cy, 10 GeV/u

ESR - CRYRING ESR

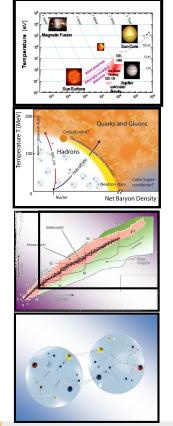
- rigidity: upto 10 Tm
- electron cooling
- typical energies ~ 300 MeV/u
- CRYRING
 - rigidity 0.04 1.44 Tm
 - ion source for stand alone operation

Super-FRS

ACCEPTANCE

- horizontal $\Phi_x = \pm 40$ mrad
- vertical $\Phi_y = \pm 20$ mrad
- momentum $\Delta p/p = \pm 2.5 \%$
- magnetic rigidity 2 20 Tm MOMENTUM RESOLUTION
- first stage = 750
- second stage = 1500

CR - HESR CR


max. rigidity 13 Tm

- fast bunch rotation, coasting beam
- stochastic cooling HESR
- rigidity: 5-50 Tm
- accelerating p, anti-p and highly charged ions
- stochastic (and electron) cooling

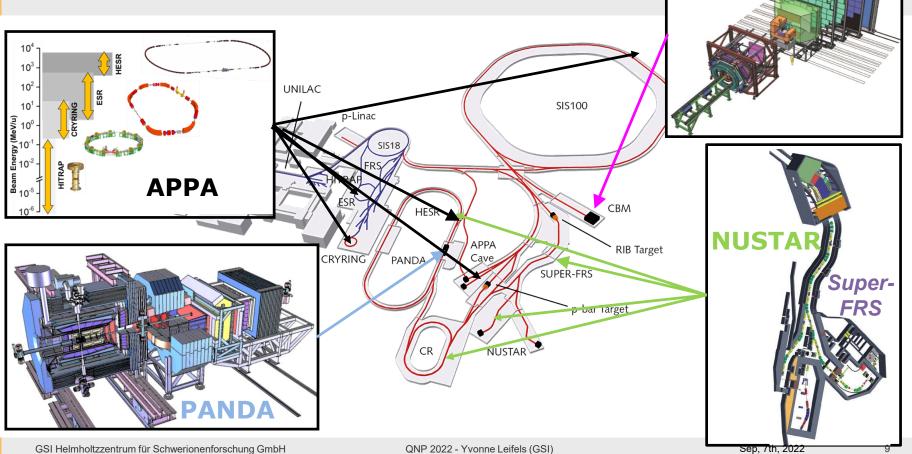
FAIR research is organized in four pillars

APPA

atomic physics, biophysics, plasma physics, materials research

nuclear- and quark-matter

C.B.M


PANDA

nuclear structure and nuclear astrophysics

NuSTAR

hadron structure and dynamics

FAIR facility

HADES

+ CBM

FAIR civil construction progressing well

FAIR civil construction

Some examples

- building hosting cryogenics completed
- coating and TBI installation for SIS100 tunnel ongoing
- concrete works for CBM cave completed, crane installation started

FAIR accelerators

SIS100 – Pumping chambers

Power supplies | India

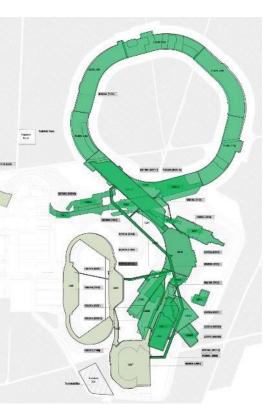
SIS100 – Dipole magnets

SIS100 sc quadrupole testing facility / Salerno

FAIR experiments

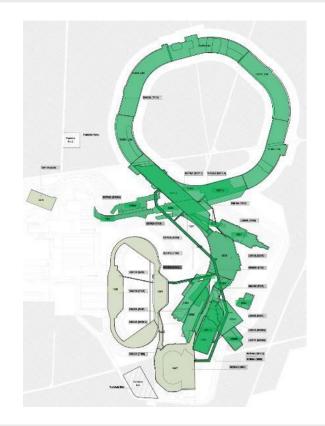
GSI Helmholtzzentrum für Schwerionenforschung GmbH

QNP 2022 - Yvonne Leifels (GSI)


Current status of FAIR

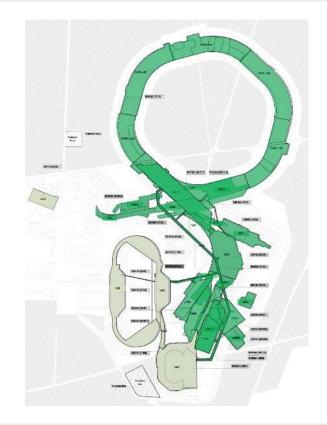
Intermediate Objective (IO) as an interim step towards full FAIR Modularized Start Version MSV

IO comprises


- the full scope of accelerators and experiments for the MSV
- the realization of the buildings for MSV except the buildings for CR, HESR and pLinac.

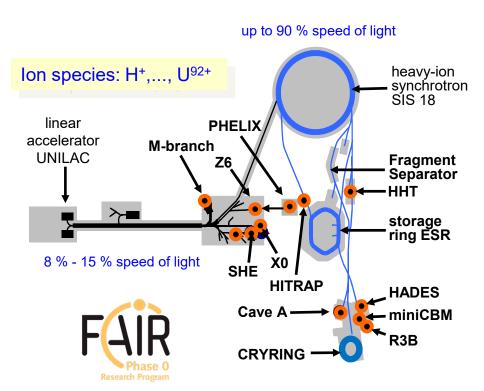
- over 60% of concrete work for IO complete, all orders for technical building equipment for IO have been placed
- over 40% of accelerator components for the entire FAIR MSV have been manufactured and tested, and most of the remaining components have been commissioned
- close to 50% of experiment components for FAIR MSV have been completed and most of remaining components have been commissioned

- Several events are affecting the project realization progress and financial needs
 - the COVID pandemic, especially affecting the supply chain
 - the sharp increase on the international markets of raw materials and electronic components
 - more lately, the invasion of Ukraine by Russia
 - probable need to produce components elsewhere, potential funding gap
- These events result in delays and in substantial additional financial needs



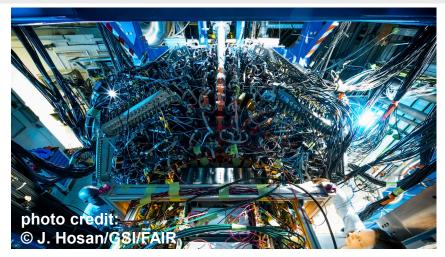
Consequences

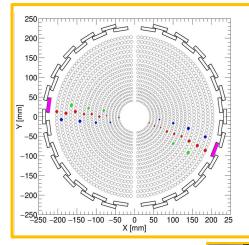
- Market survey was performed in response to the potential non availability of components for experiments and accelerators foreseen to be built in Russia
 - no show stoppers
 - for all components alternative producers identified
 - a decision on continuation of the contracts with Russian producers is expected at the next Council Meeting
- Following the identification of these additional financial needs, "First Science" and staging review has been launched by the FAIR Council
 - initiated by the FAIR Council: International group of experts, co-Chairs are Prof. Rolf Heuer and Prof. Robert Tribble
 - results of review are foreseen in September 2022 and will be basis for further action



FAIR Phase-0 at (but not only) the GSI facilities

Staged approach to FAIR science started in 2019


- working towards start of FAIR
- progressive commissioning of GSI accelerators and already existing FAIR detectors
- 3 months user beamtime/year at GSI
- 2021 and 2022 runs completed as planned
- In a dedicated G-PAC meeting in Dec 2021, the medium-term strategy has been defined in consultation with the community
- Following call for 2023/24 bem time, the individual PACs will evaluate the proposals in Sep 2022



Study of hyper nuclei WASA @ FRS

WASA detector:

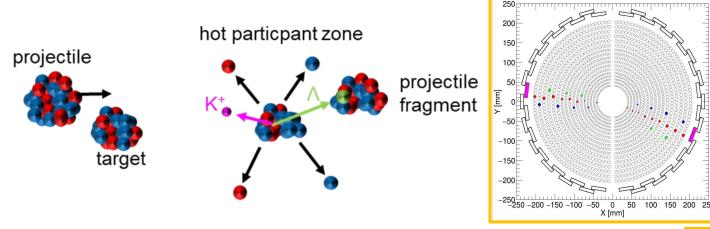
- 18 tons of weight
- s.c. solenoid magnet (700 A, 1.0 Tesla)
- ≈10,000 electronic channels
- installation work: July 2021 January 2022

Data stream:

- up to 300 MB/second
- 50 TB recorded in 1 week of beamtime

Main detectors:

- Scintillator barrel
- Mini Drift Chambers
- CsI calorimeter
- Fiber tracking detectors


- Novel spectroscopic techniques are explored to study exotic nuclei and exotic atoms
- For the first time a calorimeter is coupled to a high-resolution spectrometer for relativistic beams

Experiments:

- Search for eta'-mesic nuclei (S490, K. Itahashi et al.)
- Hypernuclei spectroscopy (S447, T. Saito et al.)

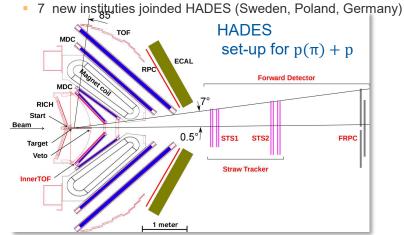
Study of hyper nuclei WASA @ FRS

WASA detector:

- 18 tons of weight
- s.c. solenoid magnet (700 A, 1.0 Tesla)
- ≈10,000 electronic channels
- installation work: July 2021 January 2022

Data stream:

- up to 300 MB/second
- 50 TB recorded in 1 week of beamtime

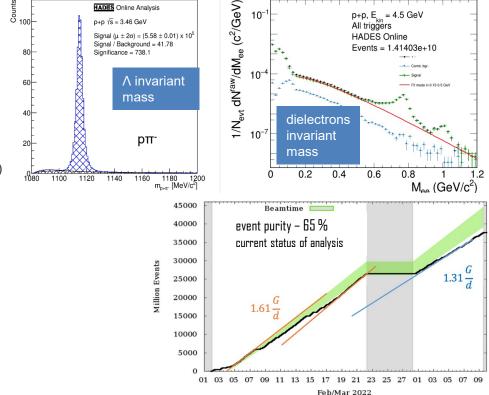

Main detectors:

- Scintillator barrel
- Mini Drift Chambers
- Csl calorimeter
- Fiber tracking detectors

- Novel spectroscopic techniques are explored to study exotic nuclei and exotic atoms
- For the first time a calorimeter is coupled to a high-resolution spectrometer for relativistic beams

Experiments:

- Search for eta'-mesic nuclei (S490, K. Itahashi et al.)
- Hypernuclei spectroscopy (S447, T. Saito et al.)



Production and electromagnetic decay of Counts 100 Successful beam time: 42 B events collected

New detector systems: STS forward tracker stations (PANDA), forward RPC (HADES), photon camera (CBM), inner TOF (FAIR-NRW), LGAD TO (HADES)

HADES 2022

hyperons

online

GSI Helmholtzzentrum für Schwerionenforschung GmbH

GSI Helmholtzzentrum für Schwerionenforschung GmbH

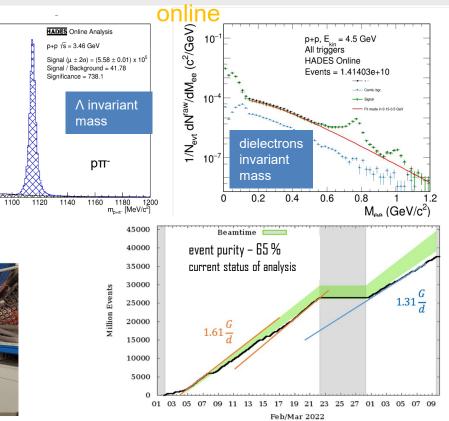
HADES 2022

Forward RPC

Production and electromagnetic decay of hyperons

- Successful beam time: 42 B events collected
- New detector systems: STS forward tracker stations (PANDA), forward RPC (HADES), photon camera (CBM), inner TOF (FAIR-NRW), LGAD TO (HADES)
 - 7 new instituties joinded HADES (Sweden, Poland, Germany)

Two PANDA-type forward straw stations (STS1 and STS2) Small polar angle region $(0.5^\circ < \theta < 7^\circ)$ for hyperon reconstruction


itof

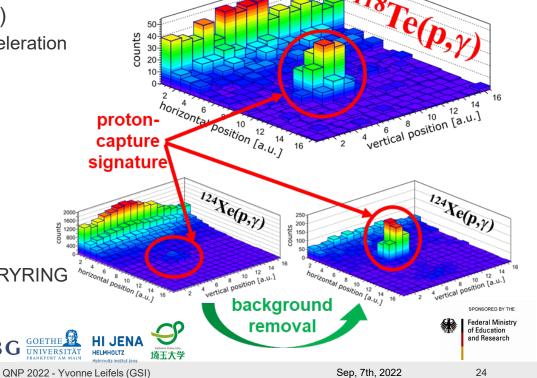
STS2

STS1

QNP 2022 - Yvonne Leifels (GSI)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

First reaction study on stored exotic beam at low energies

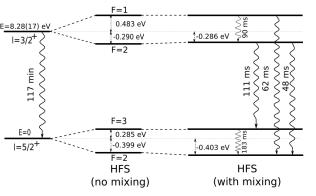

- study of radioactive ¹¹⁸Te (6 days half-life)
 - production, storage, accumulation and deceleration of ¹¹⁸Te in FRS-ESR
 - proton-capture measurements realized at 7 MeV/u and 6 MeV/u
 - clear signatures with good statistics
- new background-free detection method
 - maximized sensitivity for detection of proton-capture reactions
- future prospects:

Jan Glorius et al. **I II**

full access to Gamow window energies in CRYRING

erc

ASTRUM SCENBG GOETH


reaction study on stored exetic beem at low a

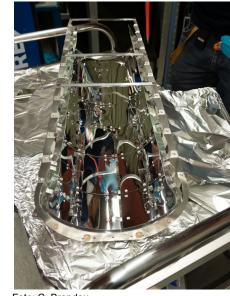
Proton-capture rates for nuclear astrophysics:

Laser excitation of the ²²⁹Th nucleus using Nuclear Hyperfine Mixing (NHM)

NHM of H-like ²²⁹Th⁸⁹⁺ : the door opener for nuclear laser spectroscopy: nuclear clock!

V. M. Shabaev, ..., C. Brandau et al., PRL. 128, 043001 (2022)

Drastic changes of nuclear life time *Excitation:* ~10⁶ more probable *and:* ~10⁶ more decay γ 's


Laser Spectroscopy at ESR: An intense "10 eV"-laser exploiting the Doppler Shift

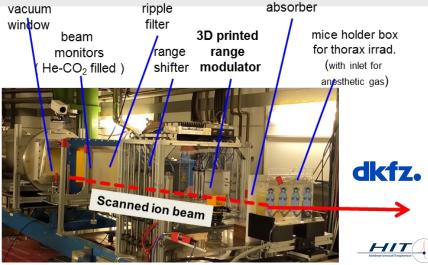
C. Brandau, W. Nörthershäuser et al., JLU Gießen, TU DA, GSI

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Redesign of in-ring VUV fluorescense detection system

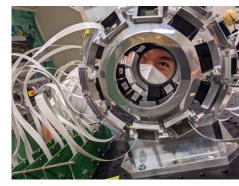
 MgF_2 -coated Al-mirrors for the detection of photons below 115nm (Collaboration Fraunhofer IOF, Jena)

Foto: C. Brandau


Achievements:

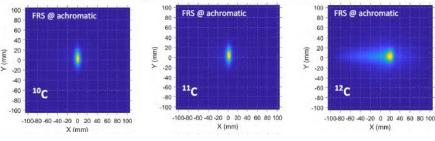
- 2*10⁴ bunched ²²⁹Th⁸⁹⁺ in ESR per 10^{9 238}U ions in SIS (future upgrade path identitfied)
- Issue-free 30Hz high-intensity laser operation @320nm
- Short ion bunches (~5ns): refined experiment timing
- New "background-free", low beamintensity bunch-length measurements (recombination in cooler + particle detectors)

Feasibility of measurement method was demonstrated !


Biophysics: Flash therapy and therapy with radioactive ions

Same effect on the tumor with less damage to healthy tissue

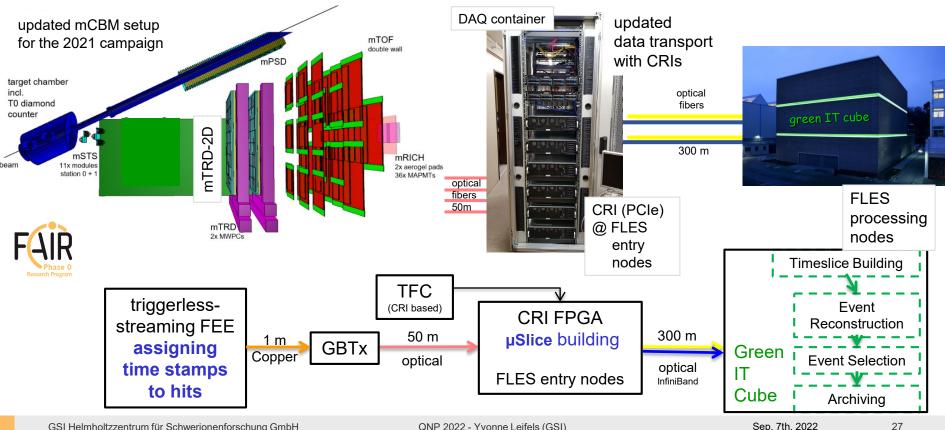
<u>Beam:</u>	Extraction time: <200 ms
240 MeV/u ; ¹² C	
<u>Beam intensity</u> :	Dose-rate: typ. 100 Gy/s
5×10 ⁹ ± 20% ions per spill	Field size: $\sim 20 \text{ x } 16 \text{ mm}^2$
> 3×10 ⁹ ions per spill	<u>SOBP</u> 2 cm (> 60 keV/µm)


Hybrid γ-PET detectors for RIB

BARB (ERC Grant) – Cancer Therapy with radioactive isotopes for simultaneous treatment and PET

~270 MeV/u, ~120 mm range in water

3D PET planar image



www.gsi.de/BARB

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Sep, 7th, 2022

mCBM @ SIS18 in 2021 precursor and demonstrator for CBM @ SIS10 $_{CBM}$ FAR $_{CB}$

GSI Helmholtzzentrum für Schwerionenforschung GmbH

QNP 2022 - Yvonne Leifels (GSI)

Sep, 7th, 2022

Summary and Conclusion

FAIR Phase-0 at GSI

- Staged approach to FAIR science which allows smooth transition from GSI to FAIR operation
 - education of young scientists and engineers
 - Maintaining expertise and skills
 - commissioning of accelerator and detector equipment
- To continue with annual runs until start of FAIR
- During commissioning of FAIR accelerators user beam time will be spread through the year

Start of FAIR

- Installation of experiments in the new experimental halls, starting with infrastructure items, during the installation of technical infrastructure
 Major revision necessary because of general explosion of prizes for raw materials and the sanction against Russia after the invasion in Ukraine
 - FAIR shareholders initiated a scientific review
 - still ongoing
 - several scenarios are being evaluated
 - final decision(s) expected end of the year

See you at FAIR!

Belleve

-

0 0 0 0 0 0

·