The 3D hadron structure: from transverse momentum dependent factorization to parton distribution and fragmentation functions

M. Boglione

In collaboration with O. Gonzalez and A. Simonelli

QCD framework

\longrightarrow Asymptotic Freedom

- Confinement

Long distance physics, non-perturbative structure functions.

Short distance effects, perturbative QCD
\rightarrow Perturbative regime (computable but process dependent terms)

Non perturbative regime (non computable but universal terms)

Strong interactions: hadron structure is a playground for 3D studies!

QCD framework

Perturbative regime (computable but process
QCD dependent terms)

Non perturbative regime (non computable but universal terms)

Long distance physics, non-perturbative structure functions.

Short distance effects, perturbative QCD

- The interplay between perturbative and non-perturbative regimes is currently one of the most challenging aspects in phenomenology.
- Factorization allows to separate the perturbative content of an observable from its non-perturbative content. At large Q and small m, the non-perturbative contributions are separated out from anything that can be computed by using perturbative techniques, and identified with universal quantities (structure functions).
- Factorization restores the predictive power of QCD

Factorization: region classification

J. Collins, Foundations of perturbative QCD (Cambridge University Press, 2011)

Particles are classified according to how they propagate in space, i.e. according to their virtuality.

Momentum regions:

$\left\{\begin{array}{l}\text { Short-distance contributions } \longrightarrow \text { Large virtuality } \\ \text { Long-distance contributions } \longrightarrow \text { Low virtuality }\end{array}\right.$

Factorization theorem

General structure of a generic factorization theorem:

- Each term is equipped with proper subtractions.
- The soft factor S encodes the correlation among the various collinear parts.
- While H can be computed in PQCD, S and C have to be determined using non perturbative methods. For instance they can be modeled and extracted from experimental data, or computed in lattice QCD

TMD observables

The 3D hadron structure and transverse momentum dependence (TMD)

- Observables that carry information about the transverse motion of partons inside the hadrons are of primary interest in modern studies of QCD, as they encode very rich information about the 3D hadron structure and transverse spin effects.
- The TMD factorization of such observables is one of the most important and challenging approach to investigate the non-perturbative core of QCD, as well as spin-spin and spinmomentum correlations between the hadrons and their constituents.

$$
\begin{gathered}
\text { Quark-quark correlation matrix } \\
\Phi_{i j}(k, P, S)=\text { F.T. }\langle P S| \bar{\psi}_{j}(0) W[0, \xi] \psi_{i}(\xi)|P S\rangle
\end{gathered}
$$

See also talks by Harut Avakian, Matteo Cerutti, Marco Contalbrigo and Andrea Simonelli

- Dirac algebra expansion
- $\xi=\left(0, \xi^{-}, \vec{\xi}_{T}\right)$
- Leading Twist (Twist-2)

Contributions @ LP (power counting)

8 TMD PDFs at leading twist

8 TMD FFs at leading twist

Collinear factorization

J. Collins, Foundations of perturbative QCD (Cambridge University Press, 2011)
$q_{T} \gtrsim Q$

The low transverse momenta of
There is enough transverse momentum to produce jets at wide angles in the final state.
the struck parton, the fragmenting parton and soft radiation are totally negligible

All the hard jets are included into the hard part

Terms that encode non-perturbative effects:

Typical
collinear factorization

- Collinear factor associated with the target
- Collinear factor associated with the detected hadron

None of them carry TMD information.

$$
d \sigma=\sum_{j, j^{\prime}} H_{j, j^{\prime}} \otimes f_{j, h_{1}}(x) \otimes d_{j^{\prime}, h_{2}}(z)
$$

TMD factorization

J. Collins, Foundations of perturbative QCD (Cambridge University Press, 2011)

The production of hard jets with high transverse momentum is strongly suppressed

The soft factor is a vacuum expectation value of Wilson lines

The hard part accounts for the sole virtual radiation.

The low transverse momenta of the struck parton, the fragmenting parton and soft radiation are relevant

Rapidity divergences

- Rapidity divergences are introduced by the approximations induced by factorization
- Problematic for TMD factorization.
- Rapidity divergences are ultimately associated to Wilson lines along the light-cone:

Eikonal propagators $\sim \frac{1}{k^{+}+i 0}$ and $y=\frac{1}{2} \log \frac{k^{+}}{k^{-}}$

Collins' regulator: soft Wilson lines are tilted off the light-cone:

$$
\begin{array}{ll}
\left(1,0, \overrightarrow{0}_{T}\right) \rightarrow\left(1,-e^{-2 y_{1}}, \overrightarrow{0}_{T}\right), & y_{1} \text { Large and positive } \\
\left(0,1, \overrightarrow{0}_{T}\right) \rightarrow\left(-e^{2 y_{2}}, 1, \overrightarrow{0}_{T}\right), & y_{2} \quad \text { Large and negative }
\end{array}
$$

Analogous to introducing a rapidity cut-offs

$$
\widetilde{d \sigma}=\sum_{j, j^{\prime}} \underbrace{H_{j, j^{\prime}} F_{j, h_{1}}\left(x, b_{T}\right.}_{-\infty<y<y_{2}} \underbrace{S\left(b_{T}\right)}_{y_{2}<y<y_{1}} \underbrace{D_{j^{\prime}, h_{2}}\left(z, b_{T}\right)}_{y_{1}<y<+\infty}
$$

The dependence on rapidity cut-offs is cancelled in the final result

Soft factor and soft/collinear subtraction

$$
\frac{d \sigma}{d q_{T}}=\mathcal{H}_{\text {proc. }} \int \frac{d^{2} \vec{b}_{T}}{(2 \pi)^{2}} e^{i \vec{q}_{T} \cdot \vec{b}_{T}} F\left(b_{T}\right) S\left(b_{T}\right) D\left(b_{T}\right)
$$

TMDs are defined through the factorization definition:

$$
D\left(z, b_{T}, y_{1}\right)=\lim _{\widehat{y} \rightarrow-\infty} \frac{D^{\text {uns. }}\left(z, b_{T}, y_{P}-\widehat{y}\right)}{S\left(b_{T}, y_{1}-\widehat{y}\right)}
$$

From quark-quark correlation matrix

Subtraction of softcollinear overlapping

The soft factor (included the subtraction term) is defined as:

$$
S\left(b_{T}, y_{1}-y_{2}\right)=\frac{\operatorname{Tr}}{N_{C}}\langle 0| W_{n_{2}}^{\dagger}\left[\overrightarrow{b_{T}} / 2, \infty\right] W_{n_{1}}\left[\overrightarrow{b_{T}} / 2, \infty\right] \times W_{n_{2}}\left[-\overrightarrow{b_{T}} / 2, \infty\right] W_{n_{1}}^{\dagger}\left[-\overrightarrow{b_{T}} / 2, \infty\right]|0\rangle
$$

The soft factor of the process and the soft factor of subtractions are the same function!

Square root definition of TMDs

S. M. Aybat and T. C. Rogers, Phys.Rev. D83, 114042 (2011)

$$
\frac{d \sigma}{d q_{T}}=\mathcal{H}_{\text {proc. }} \int \frac{d^{2} \vec{b}_{T}}{(2 \pi)^{2}} e^{i \vec{q}_{T} \cdot \vec{b}_{T}} F\left(b_{T}\right) \mathbb{S}_{2} \neq\left(b_{T}\right) D\left(b_{T}\right)=\left\{\begin{array}{l}
\text { Recasting } \\
\text { terms }
\end{array}\right.
$$

Parton model-like

$$
=\mathcal{H}_{\text {proc. }} \int \frac{d^{2} \vec{b}_{T}}{(2 \pi)^{2}} e^{i \vec{q}_{T} \cdot \vec{b}_{T}} F^{\mathrm{sqrt}}\left(b_{T}\right) D^{\mathrm{sqrt}}\left(b_{T}\right)
$$

Square-root definition of the TMD:

$$
D^{\mathrm{sqrt}}\left(z, b_{T}, y_{n}\right)=\lim _{\substack{\widehat{y}_{1} \rightarrow+\infty \\ \widehat{y}_{2} \rightarrow-\infty}} D^{\text {uns. }}\left(z, b_{T}, y_{P}-\widehat{y}_{2}\right) \sqrt{\frac{S\left(b_{T}, \widehat{y}_{1}-y_{n}\right)}{S\left(b_{T}, \widehat{y}_{1}-\widehat{y}_{2}\right) S\left(b_{T}, y_{n}-\widehat{y}_{2}\right)}}
$$

Where do we learn about TMDs?

Allows extraction of distribution and fragmentation functions

Allows extraction of fragmentation functions

BESIII

$$
\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{h}_{1} \mathbf{h}_{2} \mathbf{X}
$$

$$
\sigma_{h 1 h 2} \propto D\left(z_{1}\right) \otimes D\left(z_{2}\right) \otimes \hat{\sigma}
$$

Where do we learn about TMDs?

SIDIS:
 $e p \rightarrow h X$

In $\mathrm{e}^{+} \mathrm{e}^{-}$cross sections, distribution and fragmentation TMDs are convoluted.
How can they be disentangled?

$\frac{d \sigma}{d q_{T}}=\mathcal{H}_{\text {sidis }} \int \frac{d^{2} \vec{b}_{T}}{(2 \pi)^{2}} e^{i \vec{q}_{T} \cdot \vec{b}_{T}} \underset{\nabla}{F}\left(b_{T}\right) D\left(b_{T}\right)$

3D-picture of partons inside the target hadron

3D-picture of partons hadronizing into the detected hadron

$\mathrm{e}^{+} \mathrm{e}$ annihilations in two hadrons: $e^{+} e^{-} \rightarrow h_{1} h_{2} X$

In $\mathrm{e}^{+} \mathrm{e}^{-}$cross sections, distribution and fragmentation TMDs are convoluted.
How can they be disentangled?

$\frac{d \sigma}{d q_{T}}=\mathcal{H}_{2-\mathrm{h}} \int \frac{d^{2} \vec{b}_{T}}{(2 \pi)^{2}} e^{i \vec{q}_{T} \cdot \vec{b}_{T}}{\underset{\mathbf{V}}{ }\left(b_{T}\right) D_{2}\left(b_{T}\right)}^{D^{2}}$
3D-picture of the hadronization of partons into hadrons

$\mathrm{e}^{+} \mathrm{e}^{-}$annihilations in one hadron: $e^{+} e^{-} \rightarrow h X$

$$
\frac{d \sigma}{d P_{T}}=d \widehat{\sigma} \otimes D^{\star}\left(P_{T}\right)
$$

3D-picture of the hadronization of partons into hadrons

In $e^{+} e^{-} \rightarrow h X$ cross sections, only one fragmentation TMD appears

One of the cleanest ways to access TMD Fragmentation Functions*...

BUT

$D *\left(P_{T}\right)$ is not the same as $D\left(P_{T}\right)$!!!

Soft Gluon contribution

Soft Gluon Factor: $\left\{\begin{array}{l}\text { Non-Perturbative contribution } \\ \text { Evenly shared by the TMDs }\end{array}\right.$

Soft Gluons

M. Boglione, A. Simonelli, Eur. Phys. J. C 81 (2021)

Soft Gluon Factor:

- Perturbative contribution
- The TMD FF* is free from any soft gluon contributions

$\mathrm{D}\left(\mathrm{P}_{\mathrm{T}}\right)$ and $\mathrm{D}^{*}\left(\mathrm{P}_{\mathrm{T}}\right)$ are different, BUT

 the relation between D and D^{*} is known!We can perform combined analyses and disentangle non-perturbative terms.

Relation between FF and FF*

M. Boglione, A. Simonelli, Eur. Phys. J. C 81 (2021)

SQUARE ROOT DEFINITION

Usual definition of TMDs.
Soft Gluon Factor contributing to the cross section are included in the two TMDS and equally shared between them.

FACTORIZATION DEFINITION

Purely collinear

TMD, totally free from any soft gluon contribution.

SOFT MODEL

The Soft Gluon Factor appearing in the cross section (process dependent) is not included in the TMD

- Same for Drell-Yan, SIDIS and 2-hadron production. (2-h class universality).
- Non-perturbative function (phenomenology).

$e^{+} e^{-} \rightarrow h X$ cross section

M. Boglione, A. Simonelli, JHEP 02 (2021) 076

The hadronic cross section is written as a convolution of a partonic cross section with a TMD FF

$$
\begin{array}{r}
\frac{d \sigma}{d z_{h} d T d P_{T}^{2}}=\pi \sum_{f} \int_{z_{h}}^{1} \frac{d z}{z} \frac{d \widehat{\sigma}_{f}}{d z_{h} / z d T} D_{1, \pi^{ \pm} / f}\left(z, P_{T}, Q,(1-T) Q^{2}\right) \\
\begin{array}{l}
\text { The TMD FF acquires a } \\
\text { dependence on thrust through } \\
\text { its rapidity cut-off. }
\end{array}
\end{array}
$$

Partonic cross section (NLO)

M. Boglione, A. Simonelli, JHEP 02 (2021) 076

$$
\frac{d \sigma}{d z_{h} d T d P_{T}^{2}}=\pi \sum_{f} \int_{z_{h}}^{1} \frac{d z}{z} \underbrace{\frac{d \widehat{\sigma}_{f}}{d z_{h} / z d T}} D_{1, \pi^{ \pm} / f}\left(z, P_{T}, Q,(1-T) Q^{2}\right)
$$

$$
\frac{d \widehat{\sigma}_{f}}{d z d T}=\left[-\sigma_{B} e_{f}^{2} N_{C} \frac{\alpha_{S}(Q)}{4 \pi} C_{F} \delta(1-z)\left[\frac{3+8 \log \tau}{\tau}\right]+\mathcal{O}\left(\alpha_{S}(Q)^{2}\right)\right] e^{-\frac{\alpha_{S}(Q)}{4 \pi} 3 C_{F}(\log \tau)^{2}+\mathcal{O}\left(\alpha_{S}(Q)^{2}\right)}
$$

TMD Fragmentation Function

$$
\frac{d \sigma}{d z_{h} d T d P_{T}^{2}}=\pi \sum_{f} \int_{z_{h}}^{1} \frac{d z}{z} \frac{d \widehat{\sigma}_{f}}{d z_{h} / z d T} D_{1, \pi^{ \pm} / f\left(z, P_{T}, Q,(1-T) Q^{2}\right)}
$$

Fourier Transform of:

Collinear FFs

$$
\begin{aligned}
& \widetilde{D}_{1, \pi^{ \pm} / f}\left(z, b_{T} ; Q, \tau Q^{2}\right)=\frac{1}{z^{2}} \sum_{k}\left[d_{\pi^{ \pm} / k} \otimes \mathcal{C}_{k / f}\right]\left(\mu_{b}\right) \times \\
& \quad \times \exp \left\{\frac{1}{4} \widetilde{K} \log \frac{\tau Q^{2}}{\mu_{b}^{2}}+\int_{\mu_{b}}^{Q} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{D}-\frac{1}{4} \gamma_{K} \log \frac{\tau Q^{2}}{\mu^{\prime 2}}\right]\right\} \times \\
& \quad \times \underbrace{\left(M_{D}\right)_{f, \pi^{ \pm}}\left(z, b_{T}\right)} \exp \{-\frac{1}{4} \underbrace{g_{K}\left(b_{T}\right)} \log \left(\tau \frac{Q^{2}}{M_{H}^{2}}\right)\}
\end{aligned}
$$

Perturbative part (NLL)

Non-Perturbative part Phenomenological Model

Universal, independent of the TMD definition used

Phenomenological parametrization: Mo

M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]

$$
M_{D}=\frac{2^{2-p}\left(b_{T} M\right)^{p-1}}{\Gamma(p-1)} K_{p-1}\left(b_{T} M\right) \times F\left(b_{T}, z_{h}\right)
$$

Power-law model

$\mathcal{F} \mathcal{T}\left\{M_{D}\right\}$
reminiscent of a propagator in k_{T} space $\} \overline{\left(k_{T}^{2}+M^{2}\right)^{p}}$

Multiplicative

 function modulating the z dependeceExponential behaviour at $\mathrm{b}_{\boldsymbol{T}} \rightarrow \infty$

Preliminary fits at fixed z show that

- the M and p parameters are VERY strongly correlated
- M requires some z-dependence while p does not vary much with z

Phenomenological parametrization: Mo

M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]

$$
M_{\mathrm{D}}=\frac{2^{2-p}\left(b_{\mathrm{T}} M_{0}\right)^{p-1}}{\Gamma(p-1)} K_{p-1}\left(b_{\mathrm{T}} M_{0}\right) \times F\left(b_{\mathrm{T}}, z_{h}\right)
$$

BK parameters do not depend on z
M_{D} MODEL 1

ID	M_{D} model
I	$F=\left(\frac{1+\log \left(1+\left(b_{\mathrm{T}} M_{z}\right)^{2}\right)}{1+\left(b_{\mathrm{T}} M_{z}\right)^{2}}\right)^{q}$
	$M_{z}=-M_{1} \log \left(z_{h}\right)$

z-dependence controlled by the function F , through Mz_{z}
z-dependence controlled by F

Phenomenological parametrization: M_{D}

$$
M_{D}=\frac{2^{2-p_{z}}\left(b_{T} M_{z}\right)^{p_{z}-1}}{\Gamma\left(p_{z}-1\right)} K_{p_{z}-1}\left(b_{T} M_{z}\right) \times F\left(b_{T}, z_{h}\right)
$$

BK parameters depend on z

$$
F=1
$$

M MODEL 2

$$
\text { II } \left\lvert\, \begin{aligned}
& F=1 \\
& M_{z}=M_{h} \frac{1}{z f(z)^{2}} \sqrt{\frac{3}{1-f(z)}} \\
& p_{z}=1+\frac{3}{2} \frac{f(z)}{1-f(z)} \\
& f(z)=1-(1-z)^{\beta}, \quad \beta=\frac{1-z_{0}}{z_{0}}
\end{aligned}\right.
$$

The z behaviour of M_{D} is constrained by requiring that the theory lines appropriately reproduce the peak and the width of the measured cross sections, at each value of z.

BELLE Phys. Rev. D99 (2019) 11112006

Phenomenological parametrization: g_{\star}

M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]

In this analysis we consider two different hypothesis for g_{k} for which, asymptotically, we have $\mathrm{g}_{\mathrm{K}}=\mathrm{o}\left(\mathrm{b}_{\mathrm{T}}\right)$
J. Collins, T. Rogers, Phys. Rev. D 91, 074020 (2015)
C. Aidala et al., Phys.Rev. D89, 094002 (2014)
A.. Vladimirov Phys. Rev. Lett. 125, 192002 (2020).

g_{K} model		
A	$g_{\mathrm{K}}=\log \left(1+\left(b_{\mathrm{T}} M_{\mathrm{K}}\right)^{p_{\mathrm{K}}}\right)$	$M_{\mathrm{K}}, p_{\mathrm{K}}^{*}$
B	$g_{\mathrm{K}}=M_{\mathrm{K}} b_{\mathrm{T}}^{\left(1-2 p_{\mathrm{K}}\right)}$	$M_{\mathrm{K}}, p_{\mathrm{K}}^{*}$

Testing different b_{T} behaviors of g_{k} allows us to give a reliable estimate of the uncertainties affecting our analysis

Phenomenological results - correlations

M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]

Model I
 3 parameter fit

$q_{\mathrm{T}} / Q<0.15(\mathrm{pts}=168)$		
IA		
$\chi_{\text {d.o.f. }}^{2}$	1.25	1.19
$M_{0}(\mathrm{GeV})$	$0.300_{-0.062}^{+0.075}$	$0.003_{-0.003}^{+0.089}$
$M_{1}(\mathrm{GeV})$	$0.522_{-0.041}^{+0.037}$	$0.520_{-0.040}^{+0.027}$
p^{*}	1.51	1.51
q^{*}	8	8
$M_{\mathrm{K}}(\mathrm{GeV})$	$1.305_{-0.146}^{+0.139}$	$0.904_{-0.086}^{+0.037}$
p_{K}^{*}	0.609	0.229

Data selection

$$
0.375 \leq z_{h} \leq 0.725, \quad 0.750 \leq T \leq 0.875
$$

$$
q_{\mathrm{T}} / Q \leq 0.15
$$

Phenomenological results - correlations

M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]

Model II

3 parameter fit

$q_{\mathrm{T}} / Q<0.15(\mathrm{pts}=168)$		
IIA		
$\chi_{\text {d.o.f. }}^{2}$	1.35	1.33
z_{0}	$0.574_{-0.041}^{+0.039}$	$0.556_{-0.051}^{+0.047}$
$M_{\mathrm{K}}(\mathrm{GeV})$	$1.633_{-0.105}^{+0.103}$	$0.687_{-0.171}^{+0.114}$
p_{k}	$0.588_{-0.141}^{+0.127}$	$0.293_{-0.038}^{+0.047}$

Data selection

$$
\begin{aligned}
& 0.375 \leq z_{h} \leq 0.725, \quad 0.750 \leq T \leq 0.875 \\
& q_{\mathrm{T}} / Q \leq 0.15
\end{aligned}
$$

Phenomenological results - T dependence

M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]

BELLE Collaboration, R. Seidl et al.,Phys. Rev. D99 (2019), no. 11112006

Phenomenological results

M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]

Phenomenological results

M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]

Collins-Soper kernel: comparison to other analyses

M. Boglione, J.O. Gonzalez-Hernandez, A. Simonelli, 2206.08876 [hep-ph]

Our extraction of the Collins-Soper Kernel compared to corresponding lattice computations

M.-H. Chu et al. (LPC22), arXiv:2204.00200 [hep- lat]
Y. Li et al.,(ETMC/PKU) Phys. Rev. Lett. 128, 062002 (2022),
P. Shanahan et al. (SVZ21) Phys. Rev. D 104, 114502 (2021),
M. Schlemmer et al. (SVZES) JHEP 08, 004 (2021),

Our extraction of the Collins-Soper Kernel compared to other phenomenological analyses

I. Scimemi and A. Vladimirov, (SV19) JHEP 06, 137 (2020)
A. Bacchetta, et al. (PV19) JHEP 07, 117 (2020)

Outlook

1. $e^{+} e^{-} \rightarrow h X$

Extraction of the unpolarized TMD FF, D*, for charged pions from BELLE data (using factorization definition)

2. $e^{+} e^{-} \rightarrow h_{1} h_{2} X$

Two non-perturbative functions:
D*, known from step 1
Soft Model M_{s}, obtained as ratio: $M_{S}=D / D^{\star}$
3. $S I D I S$

Three non-perturbative functions in the cross section D*, known from step 1.
Soft Model M_{s}, known from step 2.
Extraction of the TMD PDF, F^{*} (in the factorization definition, $\mathrm{F}^{*} \neq \mathrm{F}$).

Conclusions and Outlook

The Soft Factor acquires a central role

The focus of phenomenological analyses moves from the TMDs considered as a whole, to the Soft Factor contribution (which encloses the full process dependent part of the TMD).

The Collins-Soper kernel acquires a central role

The focus of phenomenological analyses moves from the TMDs considered as a whole, to the g_{k} function (which embeds the nonperturbative essence of the TMD evolution).

