

HEP in the new quantum era

7th September 2022, QNP2022

João Barata, BNL

Based on: 2208.06750, with M. Li, X. Du, W. Qian, C. Salgado

Why Quantum computing?

Simulating Physics with Computers

Richard P. Feynman

"Nature isn't classical ... and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

1

What is Quantum computing?

ment at the LHC, CERN

Quantum devices

Quantum problems

Some recent works on quantum computing applications for HEP

Disclaimer: I will focus on work more relevant for jet physics in vacuum and in heavy ions

Quantum computing for HEP: ab initio QFT simulation

thousands of high quality qubits !

Can we use QCs to tackle smaller problems?

Quantum computers can, in principle, simulate scattering events ab initio

Figure by H. Lamm

3

Quantum computing for HEP: EFT approach

e.g. EFTs allow to explore the low energy sector in a first principle manner (no modeling)

Full simulation is expensive, but the problem can be decomposed into several pieces

Simulating collider physics on quantum computers using effective field theories

Christian W. Bauer^{*} and Benjamin Nachman[†]

Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Marat Freytsis[‡]

NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA and Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Quantum computing for HEP: fragmentation

Still for the low energy sector, away from $\Lambda_{\rm OCD}$, parton showers can also get quantum improvement

$$\mathcal{H} = \mathcal{H}_C \otimes \mathcal{H}_P U = S \cdot (C \otimes I)$$

$$U_c = \begin{pmatrix} \sqrt{1 - P_{jk}} & \sqrt{P_{jk}} \\ \sqrt{P_{jk}} & \sqrt{1 - P_{jk}} \end{pmatrix}$$

All parton shower histories are in a superposition state

A quantum algorithm for high energy physics simulations

Benjamin Nachman,^{*} Davide Provasoli,[†] and Christian W. Bauer[‡] Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Wibe A. de Jong[§]

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA (Dated: December 30, 2019)

A quantum walk approach to simulating parton showers

Khadeejah Bepari,^a Sarah Malik,^b Michael Spannowsky^a and Simon Williams^c

Quantum computing for HEP: evolution in media

For heavy ions physics, QC can be used to tackle real time evolution in the medium ...

Quantum algorithms for transport coefficients in gauge theories

Thomas D. Cohen,^{1,*} Henry Lamm,^{2,†} Scott Lawrence,^{3,‡} and Yukari Yamauchi^{1,§} (NuQS Collaboration)

¹Department of Physics, University of Maryland, College Park, MD 20742, USA ²Fermi National Accelerator Laboratory, Batavia, Illinois, 60510, USA ³Department of Physics, University of Colorado, Boulder, CO 80309, USA (Dated: April 6, 2021)

... or compute transport coefficients

Quantum simulation of open quantum systems in heavy-ion collisions

Wibe A. de Jong,^{1, *} Mekena Metcalf,^{1, †} James Mulligan,^{2, 3, ‡} Mateusz Płoskoń,^{2,§} Felix Ringer,^{2,¶} and Xiaojun Yao^{4,**}

¹Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ³Physics Department, University of California, Berkeley, CA 94720, USA ⁴Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(Dated: September 9, 2021)

Quantum computing for jet quenching

2104.04661, 2208.06750

Why quantum computing for jets in medium?

Many of the pheno relevant effects in jet quenching have a quantum origin

1210.7765, J. Casalderrey-Solana , Y. Mehtar-Tani, C.Salgado, K. Tywoniuk

See talk by A. Soto-Ontoso

7

Jet quenching in a QC: a possible approach

Integrating out x⁻ the quark propagator satisfies

$$\left(i\partial_t + \frac{\partial_{\boldsymbol{x}}^2}{2\omega} + g\mathcal{A}^-(t,\boldsymbol{x})\cdot T\right)G(t,\boldsymbol{x};0,\boldsymbol{y}) = i\delta(t)\delta(\boldsymbol{x}-\boldsymbol{y})$$

Parton evolution is equivalent to 2+1d non-rel. QM

$$\mathcal{H}(t) = rac{p^2}{2\omega} + g\mathcal{A}^-(t, \boldsymbol{x}) \cdot T = \mathcal{H}_K + \mathcal{H}_\mathcal{A}(t)$$

p-space x-space

Consider the simplest case:

- $|q\rangle$ Fock space only
- **2.** T = 1
- Stochastic background (hybrid approach) 3.

The quantum simulation algorithm

QComputers can efficiently simulate real time evolution ruled by:

$$|\psi\rangle(t) = \exp(-iHt)|\psi\rangle(0)$$

The 5 main steps of the Quantum Simulation Algorithm:

1. Provide
$$H = \sum_{k} H_k$$
 and $\psi(0)$

Encode the physical d.o.f's in terms of qubits and decompose H_k in terms of gates 2.

- 3. Prepare the initial wave function from a fiducial state ($|0\rangle^{\otimes n_{qubits}}$)
- **4.** Time evolve according to exp(-iHt)
- **5.** Implement a measurement protocol

Set up the algorithm

1. Provide
$$H = H_K + H_A(t)$$
 and $\psi(0) =$

Encode the physical d.o.f's in terms of qubits and write H in terms of gates 2. Introduce 2d spatial lattice with $N_s = 2^{n_Q}$ sites per dimension

$$|\mathbf{x}\rangle = |x_1, x_2\rangle$$

such that

 $H = rac{oldsymbol{P}^2}{2E} + gA(t, oldsymbol{X}$

$$\hat{P}|p\rangle = p|p\rangle \qquad \hat{X}|z$$

Prepare the initial wave function from a fiducial state ($|0\rangle^{\otimes n_{\text{qubits}}}$) \checkmark 3.

$= \psi(\mathbf{p} = 0) + \text{ensemble of } \{A, p_A\}$

 $= a_{1} | n_{1}, n_{2} \rangle$

$$T = H_K + H_A(t)$$

 $x\rangle = x \,|\, x\rangle \qquad x, p \in \mathbb{Z}$

Set up the algorithm

4. Time evolve according to U Assuming that field is static we use

$$U(L_{\eta}; 0) = \prod_{k=1}^{N_t} U(x_k^+; x_{k-1}^+)$$

Implement operators with a Fourier Transform in between

$$\exp\left\{-i\delta x^{+}\frac{\hat{p}^{2}}{2p^{+}}\right\} \quad |\psi_{\mathbf{p}}\rangle \qquad |\mathbf{p}\rangle$$

$$U(x_k^+ + \delta x^+; x_k^+) \approx U_K(\delta x^+) U_A(\delta x^+, x_k^+)$$

$$\equiv \exp\left\{-i\delta x^{+}\frac{\hat{p}^{2}}{2p^{+}}\right\} \exp\left\{-ig\delta x^{+}\hat{A}_{a}^{-}(x_{k}^{+})T^{a}\right\}$$

$$\left| \begin{array}{c} \mathbf{X} \\ \mathbf{X} \\$$

Set up the algorithm

4. Time evolve according to ${\cal U}$

Field insertions require probing the field value. This is done classically

Requires $O(N_{\text{states}})$ field evaluations; Ok for resolving parton evolution

Major limitation of the approach due to classical treatment of medium

Can be made more efficient with further discretization of the field values

Set up:

- 1. T = 1 (no colors) mostly
- Static brick of length 10 fm 2.
- 5/6 qubits per spatial dimension (1024/4096 states in total). 3.
- 4.

Determined by saturation scale:

$$g^2 \tilde{\mu} = \sqrt{\frac{2\pi Q_s^2}{C_F L_\eta}}$$

Determined by lattice saturation conditions:

$$\frac{\pi}{N_{\perp}m_g} \ll a_{\perp} \ll \frac{\pi}{Q}$$

(relevant physical region is covered)

$$a_{\perp}^2 Q_s^2 < \frac{4\pi^2}{3} \Big[\log(\frac{1}{a_{\perp}^2 m_g^2 / \pi^2} + 1) - \frac{1}{1 + a_{\perp}^2 m_g^2 / \pi^2} \Big]^{-1} \text{ (edge equation)}$$

We use 5 field configurations. These are determined by lattice spacing and the field strength

effects are absent)

The jet quenching parameter on the lattice is easily obtained analytically:

$$\hat{q} = \frac{1}{t} \int_{\boldsymbol{p},\boldsymbol{x},\boldsymbol{y}} \boldsymbol{p}^2 e^{-i\boldsymbol{p}\cdot(\boldsymbol{y}-\boldsymbol{x})} \langle\!\langle \boldsymbol{W}^{\dagger}(\boldsymbol{y})\boldsymbol{W}(\boldsymbol{x})\rangle\!\rangle = g^2 \langle\!\langle \boldsymbol{\nabla}_{\boldsymbol{x}}\boldsymbol{\mathcal{A}}(\boldsymbol{0})\cdot\boldsymbol{\nabla}_{\boldsymbol{x}}\boldsymbol{\mathcal{A}}(\boldsymbol{0})\rangle\!\rangle = \frac{g^4}{4\pi} C_F \tilde{\mu}^2 \left\{ \log\left(1 + \frac{\pi^2}{m_g^2}\right) - \frac{1}{1 + \frac{a_\perp^2 m_g^2}{\pi^2}}\right\} - \frac{1}{1 + \frac{a_\perp^2 m_g^2}{\pi^2}} \right\}$$

In accordance with expected result w/wo kinetic terms

Deviation at large saturation values due to lattice

Same result but for two different lattices at infinite jet energy

Same results but for a SU(2) background

Energy independent terms might give sizable contribution !

also ongoing J.B., A. Sadofyev, X.-N. Wang

Conclusion and Outlook

Quantum computing applications to HEP are still in their infancy

machines in the future

$$|\psi\rangle = c_1 |q\rangle + c_2$$

For jet quenching, the study of LPM physics can be better understood using these

