Latest Results from the CUORE Experiment

QNP 2022

Samantha Pagan on behalf of the CUORE Collaboration

Unanswered questions about neutrinos

of neutrinos species

https://www.nevis.columbia.edu/ daedalus/motiv/sterile.html

Cosmological Models

https://plancksatellite.org.uk/ results/first-full-sky-image/

Majorana or Dirac

Neutrinoless Double Beta Decay

Could explain matter anti matter asymmetry

https://cuore.lngs.infn.it/en/about/physics

Unsolved questions about neutrinos

Majorana or Dirac

Neutrinoless Double Beta Decay

Could explain matter anti matter asymmetry

https://cuore.lngs.infn.it/en/about/physics

Double Beta Decay (2vßß)

$(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{v_e}$

Standard model process

Precise measurement and spectral shape inform nuclear models

Example Isotopes: ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe (even mass number)

Measured Half-life: ~10¹⁷-10²² yrs

an 4

$(A,Z) \rightarrow (A,Z+2) + 2e^- + 2v_{\rho}$

Violates the conservation of total lepton number, Beyond the SM process

Implies a Majorana neutrino

Example Isotopes: 76Ge, 82Se, 100Mo, ¹³⁰Te, ¹³⁶Xe

Half life limits: ~10²⁵-10²⁶ years

Wright Laboratory Yale

Image Credit: J. Torres

Ovßß Half Life

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q)$$
Phase space factor
Nuc

$$m_{\beta\beta}^2 = |\sum_i U_{ei}^2 m_{\nu_i}|^2$$

https://www.particlebites.com/?m=201609

QNP 2022

Experiments using various isotopes: ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe, ⁸²Se, ¹⁰⁰Mo,

Q-value: Higher is preferable $2v\beta\beta$ background \propto

Isotopic abundance: Higher is preferable

BB Isotopes

Experiments using various isotopes: 76Ge, 130Te, 136Xe, 82Se, 100Mo,

Q-value: Higher is preferable $2v\beta\beta$ background \propto $Q^5_{\beta\beta}$

Isotopic abundance: Higher is preferable

ßß Isotopes

BB Isotopes

Experiments using various isotopes: ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe, ⁸²Se, ¹⁰⁰Mo,

Q-value: Higher is preferable $2v\beta\beta$ background \propto

Isotopic abundance: Higher is preferable

10

ßß Isotopes

130**Te**

Q-value: 2528 keV

High isotopic abundance of 33.8% can use natural crystals

11

CUORE Collaboration and Acknowledgments

lassachusetts **Institute of Fechnoloav**

Lawrence Livermore National Laboratory

SAPIENZA UNIVERSITÀ DI ROMA

We would like to acknowledge support from the U.S. Department of Energy Office of Science contract No. DE-SC0019368 and DE-SC0012654 and the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1752134.

ANO

SHARE THE TRANSPORT

CUORE: The Cryogenic Underground Observatory for Rare Events

Source/detector: ¹³⁰Te

988 TeO₂ crystals

Gran Sasso National Laboratory(LNGS), L'Aquila, Italy Average depth: ~3600 m.w.e.

> Cryogenic calorimetersbolometers

CUORE: The Cryogenic Underground Observatory for Rare Events

19 towers with 13 floors of 4 crystals each

TeO₂ natural abundance crystal 5.00×5.00×5.00 cm³, 750 g each Total ¹³⁰Te mass: 206 kg

Custom dilution refrigerator, nested vessels, and 5 pulse tubes

Operated at ~10 mK

Surrounding lead, and roman lead shielding

14

Bolometers: Operating Principle

Particle interaction increase crystal temperature

Thermal coupling to 10 mK heat bath

Neutron Transmutation Doped (NTD) Ge thermistors

QNP 2022

CUORE Sensitivity

mass

S CX all Isotopic abundance

16

Evolution of cryogenic Ovßß bolometers CUORE

CUORE Construction Photos

CUORE1 Tonne · Year Results

S.Pagan 19

CUORE Data Taking: 1 Tonne Year Results

1 Tonne · Year Energy Spectrum

1 Tonne · Year Backgrounds

Near sources: Crystals, copper holders, foil, 2vββ, crystal impurities, ²³⁸U ²³²Th chains Far Sources: Shields, Cryostat, Decays in ²³⁸U and ²³²Th chains **Externals Sources**: Environmental muons, γ s, and neutrons

1 Tonne · Year Background Fit Results

Nuisance Parameters: Analysis efficiency, energy bias, energy resolution, $Q_{\beta\beta}$, ¹³⁰Te abundance

Best fit to [2490,2575] keV

Unbinned Bayesian analysis using Bayesian Analysis Toolkit (BAT) No evidence of $ov\beta\beta$

Background-only model:

 $b = 1.49(4) \times 10^{-2} \text{ counts/(keV·kg·yr) (90 \% C. I.)}$

Best fit signal-plus-background model: $\Gamma_{\rm OV} = (0.9 \pm 1.4) \times 10^{-26} \, \rm yr^{-1}$

Fit Parameters: Γον, background index, background slope, ⁶⁰Co rate

104 toy-MC spectra with background only model

Fit spectra with signal+bkg model and extract 90% C.I. limit

Median exclusion sensitivity $T_{1/2} = 2.8 \times 10^{25} \text{ yr} (90\% \text{ C.l.})$

72% Probability to get a more stringent limit given current sensitivity

Collaboration), *Nature* **604**, 53-58 (2022)

Distribution of 90% C.L. half-lives from Toy MC experiments

CUORE 1 Tonne · Year Ovßß Limit

CUORE Ovßß Limit and Sensitivity

 10^{3}

 10^{2}

10-

 $m_{
m Beta}$ (meV)

CUORE 1 Tonne Limit: m_{ββ}< 90-305 meV

CUORE Sensitivity (5 yrs) $m_{\beta\beta} < 50 - 130 \text{ meV}$

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) \cdot |M^{0\nu}|^2 \cdot \frac{|< m_{\beta\beta} > |^2}{m_e}$$

Other rare decay searches

The CUORE Collaboration. Phys. Rev. Lett. 126:171801 (2021)

CUORE Background Model

Geant 4 simulation combined with CUORE detector response

62 simulated sources: Including $2\nu\beta\beta$ decay in the crystals and contaminants

Produces multiplicity, time resolution, energy dependent trigger efficiencies

TeO₂ Exposure: 300.7 kg·yr Bayesian analysis Performed on single crystal events Uses background model and MC Spectral fit from 350 keV to 2.8 MeV

 $T_{1/2}^{2\nu} = 7.71_{-0.06}^{+0.08} (\text{stat.})_{-0.15}^{+0.12} (\text{syst.}) \times 10^{20} \text{ yr}$

The most precise determination ¹³⁰Te 2νββ decay half-life

10²

The CUORE Collaboration. Phys. Rev. Lett. 126:171801 (2021)

Other Recent CUORE Results

All results are the most stringent limits on these searches in Te

Double beta decay of ¹³⁰Te to the first o+ excited state of ¹³⁰Xe 2527.5 keV ¹³⁰₅₂Te 1793.5 keV 1122.1 keV 536.1 keV $^{130}_{54}$ Xe Unique signature, test of nuclear physics $0\nu\beta\beta: (T_{1/2})_{0^+_2}^{0\nu} > 5.9 \times 10^{24} \text{ yr} (90\% \text{ C.I.})$ $2\nu\beta\beta: (T_{1/2})_{0^+_2}^{2\nu} > 1.3 \times 10^{24} \text{ yr} (90\% \text{ C.I.})$ Adams, D.Q. et al. (CUORE Collaboration) Eur. Phys. J. C 81, 567 (2021) https:// doi.org/10.1140/epjc/s10052-021-09317-

What comes after CUORE?

CUPID and Ovßß

CUPID: CUORE Upgrade with Particle IDentification

LNGS Gran Sasso National Laboratory

Source/detector: ¹⁰⁰Mo Signal: Peak at 3035 KeV

Upgraded Technology/Systems:

Scintillating Bolometers Particle Identification Muon Veto Baseline Background: 10⁻⁴ cts/(keV·kg·yr)

Baseline Sensitivity: $m_{\beta\beta} < 10-17$ meV

Ovßß Sensitivity from CUORE to CUPID

Baseline projected sensitivity covers the inverted ordering region

CUPID Baseline Sensitivity: m_{ββ} <10-17 MeV

- CUORE is the first tonne-scale operating cryogenic ovββ decay experiment CUORE is stably operating and aims to collect 5 yr of livetime data • 1 tonne·yr of CUORE data has been analyzed for $ov\beta\beta$ decay

- CUORE has the leading limit on $2\nu\beta\beta$ of 130 Te
- CUORE's science program includes multiple rare events searches
- CUPID will build off of the CUORE technology and infrastructure to reach greater sensitivity and cover the inverted ordering region for the $ov\beta\beta$

Summary

Thank you!

Visit <u>https://cuore.lngs.infn.it/en/about/physics</u> for more information!

Back up slides

1 Tonne-Year Parameters and Efficiencies

Parameter	Value	Collaboration), Nature 604, 53-58 (2022)		
Number of datasets	15	Efficiency name	e % efficiency	Description
Dead channels	4	ovββ containment	ent (88.350 ±	Probability for a ονββ event to be fully contained in the ROI. From
Active channels	~934		0.090)%	
TeO ₂ exposure	1038.4 kg·yr	Trigger and ener reconstruction	^{rgy} 96.418(2)%	Includes: trigger, event reconstru and pile up
¹³⁰ Te exposure	288 kg∙yr	Multiplicity/ Anticoincidenc	e 99.3(1)%	Correctly tagging a single crystal
FWHM at Q _{ββ}	7.8(5) keV	Pulse shape analysis	06.4(2)%	Efficiency for a good physical pu pass pulse shape discrimination
Trigger threshold	~10 keV		7 · · · · (-) · · ·	
Analysis threshold	40 keV	All cuts except containment	92.4(2)%	Products of the terms above, prop in quadrature

Adams, D.Q. et al. (CUORE

Implemented as additional nuisance parameters to the fit

Parameter	Dependence	Method/Prior		
Analysis efficiency I	Dataset	Gaussian		
Analysis efficiency II	Global	Gaussian		
Energy bias	Dataset	Fit residual peaks in physics spectrum from literature value with 2n order polynomial		
Energy resolution	Dataset	Fit ratio of FWHM in physics and calibration data with 1st order polynomial		
Qbb	Global	Gaussian		
130Te isotopic fraction	Global	Gaussian		

Systematics

