QNP2022 – The 9th International Conference on Quarks and Nuclear Physics

Recent Results from BESIII

Isabella Garzia, University of Ferrara and INFN On behalf of the BESIII Collaboration

Jniversità legli Studi li Ferrara September 5-9, 2022 FSU, Tallahassee, FL, USA

Beijing Electron Positron Collider II

http://english.ihep.cas.cn

BESIII - Beíjíng Spectrometer III

http://english.ihep.cas.cn

Isabella Garzía - QNP2022 - *Sep 9, 2022*

Nucl. Instr. Meth. A614, 345 (2010)

BESIII dataset

Selected BESIII results

- Light hadron Spectroscopy
 - exotic isoscalar $\eta_1(1855)$
 - ✓ new X(2600) state observed in J/ ψ radiative decays
- Charmonium(-like) spectroscopy
 - ✓ Y states and $Z_{CS}(3985)$ triplet states
- → $\phi(2170)$ strangeonium state

Isabella Garzía - QNP2022 - *Sep 9, 2022*

QNP2022

Hadron Spectrum

... but QCD allows also different combinations of quarks and gluons: EXOTIC hadrons

A lot of exotic states observed experimentally, but their nature is still far from being understood!!!

Hadron spectroscopy: establish the spectrum and study the exotic hadrons properties

Hunting for glueballs and new form of hadrons

Charmonium radiative decays is the ideal laboratory for light glueballs and hybrids hadron studies

- ✓ Clean process
- ✓ High statistics

Glueballs can mix with ordinary quarkantiquark states

> Predicted large BFs for glueballs in J/ψ radiative decays

PRL110,
021601
$$\Gamma(J/\psi \to \gamma G_{0^{++}})/\Gamma_{\text{tot}} = 3.8(9) \times 10^{-3}$$

PRL111, 091601 $\Gamma(J/\psi \to \gamma G_{2^{++}})/\Gamma_{\text{tot}} = 1.1(2)(1) \times 10^{-2}$

Exotic Hybrid states

- Low-lying hybrids can have exotic quantum numbers forbidden in the conventional QCD scheme: J^{PC} = 0⁺⁻, 1⁻⁺, 2⁺⁻
- The exotic J^{PC} = 1⁻⁺ nonet of hybrids is predicted to be the lightest
 - > Only isovector candidate observed yet: $\pi_1(1400)$, $\pi_1(1600)$ [the most extensively studied], $\pi_1(2015)$

- > Isoscalar 1^{-+} hybrids is important to establish the hybrid nonet
 - > Can be produced in J/ψ radiative decays
 - Can decay to ηη' in P-wave (PRD 83,014021, PRD 83, 014006, Eur.Phys.J.Plus 135, 945)

BESIII experiment offers the ideal environment for this search $J/\psi \rightarrow \gamma \eta \eta'$

Observation of Exotic Isoscalar State $\eta_1(1855)$ in $J/\psi \rightarrow \gamma \eta \eta'$

Further Checks on the $\eta_1(1855)$

The $\cos(\theta_{\eta})$ distribution can be expressed as an expansion in terms of Legendre polynomials; the coefficients $\langle Y_l^0 \rangle \equiv \sum_{k=1}^{N_k} W_i Y_l^0 (\cos \theta_{\eta}^i)$.

(called unnormalized moments of expansion), characterize the spin of the $\eta\eta$ ' resonances

Neglecting resonance contributions in the γη(`) subsystem, the moments are related to the spin-0 (S), spin-1 (P) and spin-2 (D) amplitudes

 ➢ Good data/PWA consistency
 ➢ Narrow structure in <Y⁰1>: ŋ₁(1855) P-wave

 $< 1^{\circ}_{1} > 1^{\circ}_{1} (1855)$ P-wa component is needed

Discussion about $f_0(1500)$ and $f_0(1710)$

The dominant contributions in the baseline PWA are from scalar resonance:

Decay mode	Resonance	$M ({\rm MeV}/c^2)$	Γ (MeV)	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{\rm PDG}$ (MeV)	B.F. (×10 ⁻⁵)	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81{\pm}0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1σ
	$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312{\pm}7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ
	$\eta_1(1855)$	$1855{\pm}9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7σ
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4σ
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0 ⁺⁺ PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7σ
$J/\psi ightarrow \eta' X ightarrow \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01^{+0.01}_{-0.02}$	10.2σ
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9 <i>σ</i>

$$\frac{\mathcal{B}(f_0(1500) \to \eta \eta')}{\mathcal{B}(f_0(1500) \to \pi \pi)} = (8.96^{+2.95}_{-2.87}) \times 10^{-2}$$

 $\frac{\mathcal{B}(f_0(1710) \to \eta \eta')}{\mathcal{B}(f_0(1710) \to \pi \pi)} < \frac{1.61 \times 10^{-3}}{@90\% \text{ C.L.}}$

This suppressed decay rate supports the hypothesis that the $f_0(1710)$ has a large overlap with the ground state scalar glueball (<u>PRD 92,121902</u>)

Consistent with PDG

arXiv:2202.00621 arXiv:2202.00623

Partial Wave Analysis of $J/\psi \rightarrow \gamma \eta' \eta'$

PWA of $J/\psi \rightarrow \gamma \eta' \eta'$ using 10 Billion of J/ψ data @ BESIII > $\eta' \rightarrow \gamma \pi^+ \pi^- / \eta \pi^+ \pi^- (\eta \rightarrow \gamma \gamma)$

1400

Resonance	$M(MeV/c^2)$	$\Gamma(MeV)$	B.F.	Significance (σ)
$f_0(2020)$	$1982 \pm 3^{+54}_{-0}$	$436 \pm 4^{+46}_{-49}$	$(2.63 \pm 0.06^{+0.31}_{-0.46}) \times 10^{-4}$	≫25 Dominant
$f_0(2330)$	$2312 \pm 2^{+10}_{-0}$	$134\pm5^{+30}_{-9}$	$(6.09 \pm 0.64^{+4.00}_{-1.68}) \times 10^{-6}$	16.3 contributions
$f_0(2480)$	$2470 \pm 4^{+4}_{-6}$	$75\pm9^{+11}_{-8}$	$(8.18 \pm 1.77^{+3.73}_{-2.23}) \times 10^{-7}$	5.2 new 0 ⁺⁺ state
$h_1(1415)$	$1384\pm6^{+9}_{-0}$	$66 \pm 10^{+12}_{-10}$	$(4.69 \pm 0.80^{+0.74}_{-1.82}) imes 10^{-7}$	5.3
$f_2(2340)$	$2346\pm8^{+22}_{-6}$	$332 \pm 14^{+26}_{-12}$	$(8.67 \pm 0.70^{+0.61}_{-1.67}) imes 10^{-6}$	16.1
0 ⁺⁺ PHSP		••••	$(1.17 \pm 0.23^{+4.09}_{-0.70}) \times 10^{-5}$	15.7

f₀(2020), f₀(2330) and
 f₂(2340) observed in η'η'
 decay mode for the first time

f₀(2020):

- Its large production rate in radiative J/ψ decay suggest a large overlap with scalar glueball
- Indication that it is a flavor singlet [Phys. Lett. B 826, 136906]

<u>PRD 105, 072002</u>

Structures between 1.8-1.9 GeV

X(2600): A New State Observed in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta'$

10 Billion of J/ ψ data @ BESIII

PRL 129, 042001

X(2600): A New State Observed in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta'$

> Simultaneous fit to $\eta' \pi^+ \pi^-$ and $\pi^+ \pi^-$ mass spectra is performed

Resonance	Mass (MeV/ c^2)	Width (MeV)	
$f_0(1500)$	$1492.5 \pm 3.6^{+2.4}_{-20.5}$	$107\pm9^{+21}_{-7}$	
X(1540)	$1540.2 \pm 7.0^{+36.3}_{-6.1}$	$157 \pm 19^{+11}_{-77}$	
X(2600)	$2618.3 \pm 2.0^{+16.3}_{-1.4}$	$195\pm5^{+26}_{-17}$	

- X(2600) resonance observed for the first time with a statistical significance greater than 20σ
- The structure in $M(\pi^+\pi^-)$ around 1.5 GeV/ c^2 can be well described with the interference between $f_0(1500)$ and the X(1540) resonances

Observation of X(1835), X(2120), X(2370) in J/ψ EM Dalitz Decays

10 Billion of J/ ψ data @ BESIII

PRL 129, 022002

 $J/\psi \rightarrow e^+e^-\eta'\pi^+\pi^-$ Confirmation of X(1835), X(2120) and X(2370) observed in J/ ψ radiative decays

Access to the EM transition form factor between J/ ψ and X(1835) states

• Additional information on the internal structure of X(1835)

$$F(q^2) = \frac{1}{1 - q^2 / \Lambda^2}$$

$$\Lambda = 1.75 \pm 0.29 \pm 0.05 \ GeV/c^2$$

Charmoníum(-líke) Spectroscopy

Charmonium-like states

Vector states $\psi(4230)$ and $\psi(4360)$

Y(4260) first seen by BaBar (PRL95, 142001); split into to states Y(4230) and Y(4360) by BESIII

- Inconsistent with simple $c\overline{c}$ scenario
- candidates for exotic:
 - Hybrid?
 - Hadronic Molecule?
 - Tetraquark?

Vector states

4.2

4.3

4.1

4.5

4.4

√s (GeV)

4.6

arXiv:2206.08554 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

- **Improved** precision w.r.t previous results <u>PRL118, 092001</u>
- Y(4220) and Y(4320) resonances are observed with $> 10\sigma$
- Structure around 4.0 GeV is better described using a BW
- Evidence of additional structure around 4.5 GeV, identified with the $\psi(4415)$

(b)

4.5

4.6

4.4

vs (GeV)

it influences the evaluation of the Y(4230) parameters

4.3

4.2

4.1

Open charm production

- ➤ Measurement of $e^+e^- \rightarrow D^{*+}D^{*-}$ and $e^+e^- \rightarrow D^{*+}D^-$
- Conventional states above threshold mainly decays into open-charm mesons, while charmonium-like states mainly decay into hidden-charm final states
- Consistent with previous results with better precision
- Sophisticated models with further studies on couple-channel effects needed to understand nontrivial structure

 $\psi_2(3823)$ - the $\psi(1^3D_2)$ state?

- $\triangleright e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823); \psi_2(3823) \rightarrow \gamma \chi_{c1}$
 - → update study of $\psi_2(3823) \rightarrow \gamma \chi_{c1}$ (<u>PRL115,011803</u>) allowing missing photon

Isabella Garzía - QNP2022 - *Sep 9, 2022*

arXiv:2203.05815

The Charged $Z_{CS}(3985)$ state

- Using 5 new datasets collected at \sqrt{s} >4.6 GeV
- 5.3 σ excess close to threshold for data at $\sqrt{s} = 4.681$ GeV
 - Similar to Z_{cs}(4000) seen by LHCb, but with different width [PRL127,082001(2021)]
- Minimal quark-content of ccsū

The Neutral $Z_{cs}(3985)$ state

- Evidence of neutral open-strange hidden charm state, $Z_{CS}(3985)^0$ with a significance of 4.6 σ
- Minimal quark content ccsd
- $\sigma^{Born}(e^+e^- \rightarrow K^0 Z_{CS}(3985)^0)$ consistent with $\sigma^{Born}(e^+e^- \rightarrow K^- Z_{CS}(3985)^+)$ as expected under isospin symmetry

-	Mass (MeV/c^2)	Width (MeV)
$Z_{cs}(3985)^0$	$3992.2 \pm 1.7 \pm 1.6$	$7.7^{+4.1}_{-3.8}\pm4.3$
$Z_{cs}(3985)^+$	$3985.2^{+2.1}_{-2.0}\pm1.7$	$13.8^{+8.1}_{-5.2}\pm4.9$

Evidence of the isospin partner of the $Z_{CS}(3985)^+$

arXiv:2204.13703

Strangeonía Spectrum

Strangeonía Spectrum

- $\phi(2170)/Y(2175)$ observed for the first time in the ϕf_0 channel by BaBar (PRD 74,091103; PRD 76,031102)
 - BESIII: PRL100,102003(2008)
 - Belle: PRD**80**,031101 (2009)

 $\phi(2170)$

φ(2170)@ BESIII

$e^+e^- \rightarrow \phi \eta$ and $\phi \eta'$

- The ratio between $\phi\eta$ and $\phi\eta$ ' partial width is important observable to access $\phi(2170)$ as a ssg hybrid state
 - partial width larger in the $\phi\eta$ channel by a factor [3-200] w.r.t $\phi\eta'$

Measurement of $e^+e^- \rightarrow \phi \pi^+\pi^-$ cross section

- ➢ 22 data points between 2.000 GeV and 3.080 GeV
- Clear structure (φ(2170)) and enhancement (X(2400)) can be seen at around 2.1 and 2.4 GeV, respectively
 - significance of 8.5σ for the X(2400)
- Cross section consistent with previous BaBar (PRD86, 012008) and Belle data (PRD80, 031101(R))

 $\phi(2170)$

 $\Gamma = 218^{+81}_{-64} \pm 5 \text{ MeV}$

 $M = 2158^{+30}_{-33} \pm 4 \text{ MeV}/c^2$

- > Independent data sample in the $\phi(1680)$ mass region is needed for further investigation
- > More data points in the 2.4 GeV region for a deeper investigation of X(2400)

Summary and Outlook

- ➢ BESIII is taking data since 2008. It will continue to run ~2030
 - Selection of latest physics results (based mainly on spectroscopy) are presented
 - Solution Observation of exotic isoscalar $\eta_1(1855)$ state and the new X(2600) state observed in J/ ψ radiative decays
 - > Y states and $Z_{CS}(3985)$ triplet states
 - \blacktriangleright Latest search on the $\phi(2170)$ strangeonium state
 - \succ Many other not covered in this talk
- Many analysis in progress!!!
- First data at higher c.m. energies in now available $(4.7 < \sqrt{s} < 4.94 \text{ GeV})$
- Further upgrade in energy (5.6 GeV) and luminosity (BEPCII-U, 3x) planned for the next year

Thank you for your attention

Back-up slídes

The BESIII Detector

Nucl. Instr. Meth. A614, 345 (2010)

 $\sigma_{xy} \sim (6 \text{ mm})/E^{1/2} @ 1 \text{ GeV}$

Isabella Garzía - University of Ferrara and INFN

 $\sigma_{pt}/p_t \sim 0.5 \%$ @ 1 GeV

BESIII physics programme

Light hadron physics

- Meson and baryon spectroscopy
- Multiquark states
- Threshold effects
- Glueballs and hybrids
- two-photon physics
- Form factors

QCD and τ

- Precision R measurement
- τ decay

Charmonium physics

- Precision spectroscopy
- Transitions and decays

XYZ meson physics

- Y(4260), Y(4360) properties
- Z_c(3900)⁺, ...

Charm physics

- Semi-leptonic form factors
- Decay constants f_{D} and f_{Ds}
- CKM matrix: $|V_{cd}|$ and $|V_{cs}|$
- $D^0 \overline{D}^0$ mixing, CPV
- Strong phases

Precision mass measurements

- τ mass
- D, D^{*} mass

Isabella Garzía - University of Ferrara and INFN

Amplitude Analyses in BESIII

- J/ψ radiative decays are ideal for searching glueballs
 - $J/\psi \to \gamma PP: 0^{++}, 2^{++}, ...$
 - $J/\psi \rightarrow \gamma PPP, \gamma VV: 0^{-+}$
- Neutral channel is much cleaner than the charged ones
- Very complicated mass spectrum in the low mass region: many broad, overlapping states complicate the study of the spectra
- Amplitude analysis: toll to extract the complex amplitudes from experimental data
 - Models with free parameters
 - Consider the kinematic of final states particles
 - Vary the parameters to maximize the likelihood
 - Mass Dependent (MD) PWA: model the dynamics of particle interactions as coherent sum of resonances
 - Mass Independent (MI) PWA: make minimal model assumptions and measure the dynamical amplitudes independently in small regions of two-meson invariant mass (PRD92, 052003 (2015))

Isabella Garzía - University of Ferrara and INFN

PWA status and plans in a nutshell

- 0++: the production rate $f_0(1710)$ is compatible with LQCD prediction for a pure gauge scalar glueball
- 2++: f₀(2340) seems to be a good candidate for tensor gluball [PRL111,091601] (large production rate)
- $0-+: \eta(2225)$ is confirmed and two additional pseudoscalar states, $\eta(2100)$ and X(2500), are observed

First Observation of X(2370) in $J/\psi \rightarrow \gamma K \overline{K} \eta'$

$\mathcal{PWA} \text{ of } J/\psi \rightarrow \mathcal{K}^+\mathcal{K}^-\pi^0$

PRD **100**,032004(2019)

- Dominant contribution from K^{*}(892)
- First observation of $K_2^*(1980)$ and $K_4^*(2045)$ in J/ ψ decays
- Two clear $J^{PC}=1^{--}$ structures observed in K⁺K⁻ mass spectrum: possible relation with $\omega(1650)$ and $\rho(2150)$

$\mathcal{PWA} \text{ of } \psi(3686) \rightarrow \mathcal{KK}\eta$

- Observation of $\phi(1680)$ in the KK mass spectra
- 1^{--} state needed to describe the dip around 1.7 GeV/ c^2 in the KK mass spectra (X(1750)? but not excluded the possibility to be the $\rho(1700)$)
- $\begin{array}{c} \mathbf{N} \\ \mathbf{$

з

• A broad structure around 2.2 GeV/ c^2 is observed, either $\phi(2170)$ or $\rho(2150)$?

PRD 105, 072002

First Observation of X(2370) in $J/\psi \rightarrow \gamma K \overline{K} \eta'$

- X(2120) and X(2370) states observed in the $\pi^-\pi^+\eta$ ' invariant mass spectra (PRL106,072002)
- The **X(2370)** measured mass is consistent with the pseudoscalar glueball candidate predicted by LQCD calculation (PRD**73**,014516)
- Simulataneus fit performed for two decay η' modes

No evidence of X(2120) is found

$$\begin{split} \mathcal{B}(J/\psi \to \gamma X(2120) \to \gamma K^+ K^- \eta') &< 1.49 \times 10^{-5} \\ \mathcal{B}(J/\psi \to \gamma X(2120) \to \gamma K^0_S K^0_S \eta') &< 6.38 \times 10^{-6} \end{split}$$

Clear X(2370) signal observed with significance of about 8.3σ

$$\begin{split} M_{X(2370)} &= 2341.6 \pm 6.5 \pm 5.7 \; \mathrm{MeV}/c^2 \quad \Gamma_{X(2370)} = 117 \pm 10 \pm 8 \; \mathrm{MeV} \\ \mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K^+ K^- \eta') &= (1.79 \pm 0.23 \pm 0.65) \times 10^{-5} \\ \mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K^0_S K^0_S \eta') &= (1.18 \pm 0.32 \pm 0.39) \times 10^{-5} \end{split}$$

Search for X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta$

Branching ratios prediction for the decay of pseudoscalar glueball with $M\sim 2.37$ GeV into three pseudoscalar mesons (PRD **87**,054036 (2013))

$$\Gamma_{G \to \eta \eta \eta'} / \Gamma_G^{tot} = 0.00082$$

$$\Gamma_{G \to KK\eta'} / \Gamma_G^{tot} = 0.011$$

$$\Gamma_{G \to \pi \pi \eta'} / \Gamma_G^{tot} = 0.090$$

➢ No obvious signal of X(2370)

Simultaneous unbinned maximum likelihood fit to the $\eta\eta\eta$ ' is performed and the 90% C.L. upper limit is calculated

(it does not contradict PRD 87,054036)

FIRST OBSERVATION in the ηηη' invariant mass spectra

φ(2170)@ BESIII

φ(2170)@ BESIII

