# CLAS12 Fast Monte Carlo

Tyler Viducic Gagik Gavalian



#### **CLAS MonteCarlo Review**

|                         | CLAS6 FastMC             | GEMC - CLAS12                                  |
|-------------------------|--------------------------|------------------------------------------------|
| Process                 | Parameterization         | Particle Swimming<br>full detector<br>response |
| Geometry                | Static                   | User-defined                                   |
| Time (single<br>thread) | 10 <sup>4</sup> events/s | 2 events/s (not including recon)               |



### What we have for CLAS12

- GEMC
  - GEANT4 framework for JLab simulation
  - Contains all detector geometries
    - Very detailed detector response
  - Handles physics sub-processes
  - Extremely comprehensive



Image courtesy Nate Dzbenski



## Clas12FastMC - Motivation

- GEMC is slow
  - 2 event/s
  - 1M events = 5.5 days computation time
  - $\circ \qquad {\sf This \ does \ not \ include \ reconstruction}$
- Ability to run large-event MC single-threaded/locally
- Full GEMC acceptances are not always needed



## Clas12FastMC - How it works

- Part of the COATJAVA framework
- Detector geometry and detection parameters are user defined
  - What particles are detected in what detector and how
  - Default setting in the works large amount of user control, if needed

#### Clas12FastMC clas12FastMC = new Clas12FastMC();

// Different ways you can detect proton

clas12FastMC.addConfiguration( pid: 2212, DetectorRegion.CENTRAL, detector: "CVT", hits: 3);

// This is proton in forward detector

clas12FastMC.addConfiguration( pid: 2212, DetectorRegion.FORWARD, detector: "DC", hits: 6); clas12FastMC.addConfiguration( pid: 2212, DetectorRegion.FORWARD, detector: "FTOF", hits: 1);



#### Clas12FastMC - How it works

- Currently implemented detectors
  - DC
  - ECal
  - FToF
  - FT (Calorimeter only)
  - CVT (SVT only)
- All others: development in progress





## Clas12FastMC - How it works

- Input/Output
  - PhysicsEvent -> PhysicsEvent Class in COATJAVA Framework
- Swims particles in the event through detector geometry
  - Particle path determined from vertex and charge -> Check if path intersects detector geometry
    - Particle within detector geometry == hit
    - Allows for expansion/reduction of detector unlike clas6 fastmc

MC::Particle Bank

PhysicsEvent mcEvent = DataManager.getPhysicsEvent( beam: 10.6, mcParticle);
if (filter.isValid(mcEvent)) {
 PhysicsEvent fastMCEvent = clas12FastMC.processEvent(mcEvent);
 eventAcceptance.acceptanceFastmc(mcEvent, fastMCEvent);



## Clas12FastMC - How good is it?

- Events generated with Pythia
- Reconstructed with GEMC and FastMC



#### **Clas12FastMC - Electron Reconstruction**





#### **Clas12FastMC - Proton Reconstruction**





## Clas12FastMC - How good is it?

• 333 events/s

• Many more optimizations to be made



#### Clas12FastMC - Recap

|                         | CLAS6 FastMC             | GEMC                                           | CLAS12 FastMC                                   |
|-------------------------|--------------------------|------------------------------------------------|-------------------------------------------------|
| Process                 | Parameterization         | Particle Swimming<br>full detector<br>response | Particle Swimming<br>shape-path<br>intersection |
| Geometry                | Static                   | User-defined                                   | User-defined<br>(shape-path<br>intersection)    |
| Time (single<br>thread) | 10 <sup>4</sup> events/s | 2 events/s                                     | 333 events/s                                    |



## To-do

- Add remaining geometry services
- Implement resolutions (FX next slide)
- Develop automated LUND2HIPO tool w/ topology filter -> pass through FastMC
- Implement detector response requirements from GEMC



## **GEMC** Resolutions for e, p, $\pi^+$ , and $\pi^-$

mom res 0=21

- Step 1: fit  $\sigma_p = p_{rec} p_{gen}$ ,  $\sigma_{\theta}$ , and  $\sigma_{\phi}$  in bins of  $\theta$  and p
- Step 2: fit the gaussian width parameter vs p for each  $\theta$  bin
- Step 3: obtain resolution parameterization vs p and  $\theta$

σ<sub>mom</sub>/mom (%)

0.5





6

mom res 0=8



0.5

#### Questions



#### Clas12FastMC - Analysis Viability

 $ho^0 o \pi^+\pi^-\gamma$ 

Reaction:  $ep 
ightarrow e' p' \pi^+ \pi^- \gamma$ 



obu class