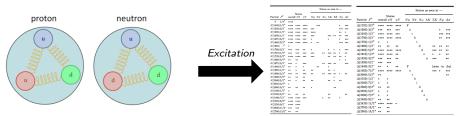


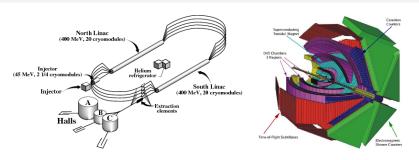
Helicity Asymmetry E for $\gamma p \rightarrow \pi^0 p$ from FROST


Chan Kim

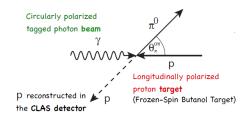
Igor Strakovsky, William Briscoe, Stuart Fegan
The George Washington University

CLAS Collaboration Meeting (HSWG) November 14, 2019

Baryon Spectroscopy


Baryon Spectroscopy is the study of excited nucleon states.

 Different quark models have different degrees of freedom, causing different predictions of resonance states & parameters of resonances (mass, width, etc).


JLab Continuous e^- Beam Accelerator (6 Gev, before upgrade to 12 GeV)

Electron Beam Energy (GeV)	Photon Beam Polarization	# of Events (M)	Observable
1.645	Circular	~1000	E
2.478	Circular	~2000	E
2.751	Linear	\sim 1000	G
3.538	Linear	~2000	G
4.599	Linear	~3000	G

Hall B g9a/FROST run from $12/2007 \sim 2/2008$

CLAS g9a/FROST Experiment

- \circ Bremsstrahlung radiation (gold foil or thin diamond) \rightarrow real polarized photon
- \circ Dynamic Nulcear Polarization \rightarrow polarized targets
- o g9a/FROST Circularly polarized photons with $E_{\gamma} \approx 0.4-2.4$ GeV and longitudinally polarized proton target
- o 8 observables at fixed $(E_{\gamma}, \theta) \to 4$ helicity amplitudes \to Resonances (PWA)

	UP_T and UP_R	UP_T and P_R	P_T and UP_R	P_T and P_R
UP_B	$\frac{d\sigma}{d\Omega}$	Р	T	$T_{x'}, T_{z'}, L_{x'}, L_{z'}$
LP_B	$-\Sigma$	$O_{x'}, (-T), O_{z'}$	H,(-P),-G	
CP_B		$-C_{x'}, -C_{z'}$	F, - E	

UP, P, LP, CP, B, T, R denote unpolarized, polarized, linearly polarized, circularly polarized, beam, target, and recoil, respectively.

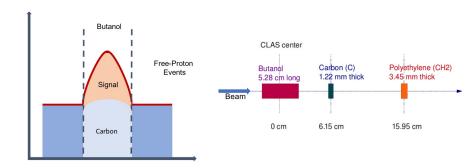
Helicity Asymmetry E

 Double polarization observable E is the helicity asymmetry of the cross section:

$$E=rac{\sigma_{3/2}-\sigma_{1/2}}{\sigma_{3/2}+\sigma_{1/2}}\qquad ext{for }rac{3}{2}\;\&\;rac{1}{2} ext{ are total helicty states}$$

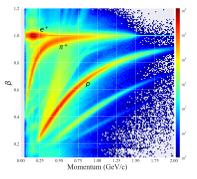
o $\frac{d\sigma}{d\Omega}$ of polarized beam & polarized target for E (theo. & exp.):

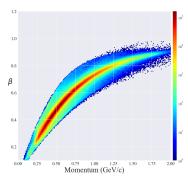
$$\left(rac{d\sigma}{d\Omega}
ight)_{rac{1}{2},rac{3}{2}} = rac{d\sigma_0}{d\Omega}(1\mp (P_zP_\lambda)_{rac{1}{2},rac{3}{2}}E)$$


• E is measured via:

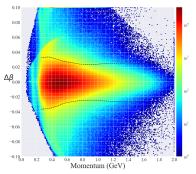
$$E = \begin{bmatrix} \frac{1}{D_f} \end{bmatrix} \begin{bmatrix} \frac{1}{P_z P_\lambda} \end{bmatrix} \begin{bmatrix} \frac{N_3 - N_1}{\frac{2}{2} - \frac{2}{2}} \\ \frac{N_3 + N_1}{\frac{2}{2}} \end{bmatrix}$$

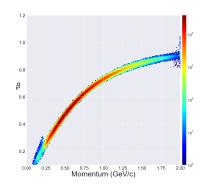
$$\left(\frac{d\sigma}{d\Omega}\right)_{\frac{1}{2},\frac{3}{2}} = \frac{N_{\frac{1}{2},\frac{3}{2}}}{A \cdot F \cdot \rho \cdot \Delta x_i}$$


 $D_f=$ dilution factor $P_z=$ Polarization of target in \hat{z} $P_\lambda=$ Polarization of beam $N_{\frac{3}{5},\frac{1}{5}}=\#$ of events

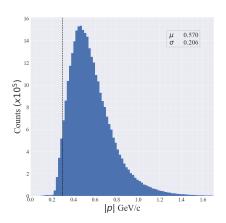

Butanol & Carbon Targets

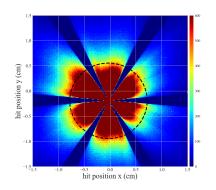
- Butanol target (C_4H_9OH) consists of polarized hydrogen (free-nucleons) & unpolarized carbon and oxygen (bound-nucleons)
- Fermi motion of bound-nucleons \rightarrow negative missing mass M_{π^0}
- Carbon target consists of unpolarized bound-nucleon
- Scale carbon target events & subtract from butanol target events


GPID for pid & MVRT for vertex positions



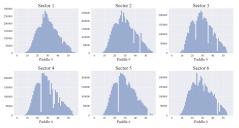
- Select events with only 1 positive outgoing particle (for $\vec{\gamma}\vec{p} \to \pi^0 p$)
- GPID matches photons in the tagging system for every charged particle.
- MVRT for single track vertex position Closest distance to measured center of the beam

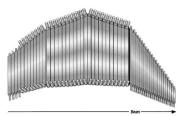

Proton Selection: $\Delta \beta$ Selection


- $\Delta \beta = \beta_{\text{measured}} \beta_p = \beta_{\text{measured}} \frac{p}{\sqrt{m_p^2 + p^2}}$
- Measure p (via curvature) and β (via SC & TOF) of positive particles
- 2D $\Delta \beta$ distribution \to 1D in bins of 100*MeV* momentum \to Gaussian fit \to Find μ, σ in each momentum bins
- Select events within $\Delta \beta < \mu \pm 3\sigma$

Low Momentum Removal

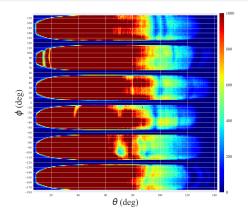
- Removal of particles with |p| < 300 MeV
- Low momentum → cannot reach drift chambers
- $\bullet \ \, \mathsf{Low} \,\, \mathsf{momentum} \,\, \mathsf{particles} \to \mathsf{more} \,\, \mathsf{energy} \,\, \mathsf{loss} \,\, \mathsf{in} \,\, \mathsf{materials} \!\! \to \mathsf{larger} \,\, \mathsf{errors} \,\,$


Radial Vertex Selection - Target Cup



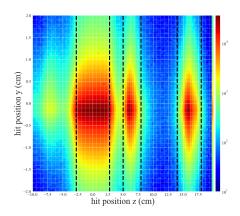
- Removed events outside of target cup (d = 1.5cm)
- He-Bath outer region

Inefficient Time-Of-Flight system paddles



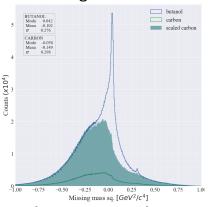
- Events from inefficient scintillator paddles removed
- o Sector2 38, 44, Sector3 23, 35, 44

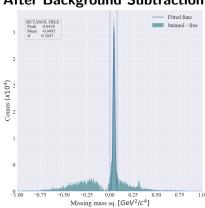
Sector4 - 23, 32, 35, 36, 40, 42


Sector5 - 23, Sector6 - 44, 46

Inactive CLAS regions

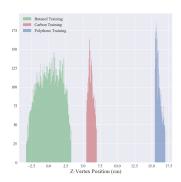
- o Inactive regions of detector coil of torus magnet, beamline holes, etc
- $\begin{array}{l} \circ \;\; \theta < \text{7, } -180 < \phi < -175, \; -125 < \phi < -115, \; -65 < \phi < -55 \; -5 < \phi < 5, \\ 55 < \phi < 65, \; 115 < \phi < 125, \; 175 < \phi < 180 \\ \end{array}$


Z-Vertex selection

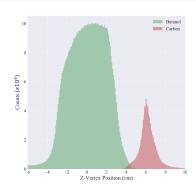

- Butanol [-2.75, 2.75]cm
- o Carbon [5, 8]cm
- o Polythene [14, 18]cm

Missing Mass Sq. Selection

Before Background Subtraction

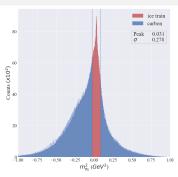


After Background Subtraction

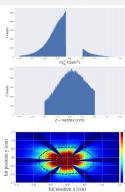


- $OM_X^2 = (E_{\gamma} + m_{p_i} E_{p_f})^2 (\mathbf{p}_{\gamma} \mathbf{p}_{p_2})^2$
- o Butanol free-nucleon region by subtracting scaled carbon from total butanol events
 - Select events within $M_X \leq M_{\pi^0} \pm 3\sigma$
 - Will perform separate mmsq selection for each $E_{\gamma} \& \cos \theta_{cm}$ bins

Initial Target Classification

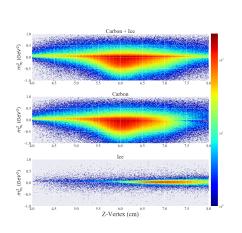


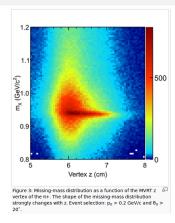
- Randomly select events with z-vertex position in close proximity of each targets
 - Butanol \in [-3.3, 3.3]cm
 - Carbon \in [5.5, 7.0]cm
 - Polythene \in [15.5, 17.0]cm



- Classified Carbon events from Butanol in z-vertex ∈ [2.5, 4.5]cm
- Some Carbon events in Polythene regions & Polythene events in Butanol region

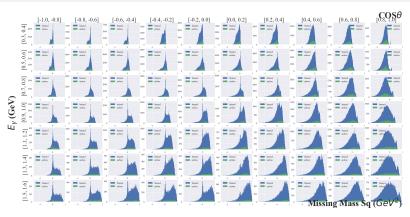
Training Data for Hydrogen Contamination




- Tight cut on the $m_{\pi_0}^2$ peak on g9a-Carbon data (or MC sim) as ice
 - Bound-nucleon (fermi p)
 - ightarrow broader m^2 distribution
 - Sharper peaks from free-nucleon (ice) & Broad background from bound-nucleon (carbon)

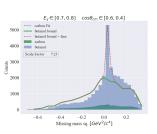
- Randomly select events within three criterion:
 - Classified carbon from initial target classification
 - Missing mass squared $\notin [-\sigma, \sigma]$
 - Z-vertex position ∈ [5.5, 6.5]
 - Events within target cup (r=7.5mm)

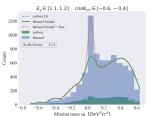
Final Result of ML: ICE vs CARBON

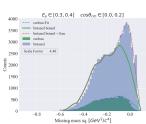


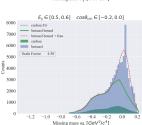
[Result from USC for $\gamma p \rightarrow \pi^+ n$]

- \circ Classified ice events from Carbon target in z-vertex \in [6.0, 7.5]cm
- It is likely that ice was formed in 20 K heat shield in between Carbon and Polythene targets.

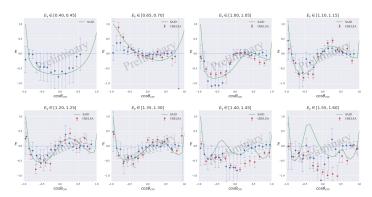

Scale Factor $\left(\frac{N_{C_4H_9OH}}{N_C}\right)$ & Dilution Factor




- As $E_{\gamma} \uparrow$, more interactions in butanol target than carbon
- o $D_f \Big|_{\text{low lim}} = \frac{\text{free H in butanol}}{\text{total nucleon in butanol}} = \frac{10}{74} \cong 0.135$


$$\circ \ D_f(E_\gamma,\theta_{cm}) = \tfrac{N_{B,f}}{N_{B,tot}} \cong 1 - \tfrac{s(E_\gamma) \times N_C(E_\gamma,\theta_{cm})}{N_{B,tot}(E_\gamma,\theta_{cm})}$$

Scale Factor $\left(\frac{N_{C_4H_9OH}}{N_C}\right)$


- Fit carbon with splines polynomials
- Splines + Gaussian to fit butanol
- Extract scale factor

$$B(x) = \alpha C(x) + S(x)$$

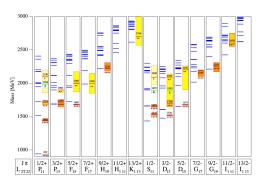
$$C(x) = p_2(x_0, \dots, x_i)$$

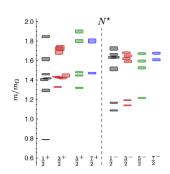
$$S(x) = A \exp\left[-\frac{(x - m_0^2)^2}{2\sigma^2}\right]$$

Preliminary: Helicity Asymmetry E

- $\circ E = \left[\frac{1}{D_f}\right] \left[\frac{1}{P_{\gamma}P_T}\right] \left[\frac{N_{\frac{3}{2}} N_{\frac{1}{2}}}{N_{\frac{3}{2}} + N_{\frac{1}{2}}}\right]$
- Measured E comparison to SAID Partial Wave Analysis predictions & CBELSA measurements
- Large error from low photon polarization (20% 83%) & incomplete scale factor calculation

Next Steps

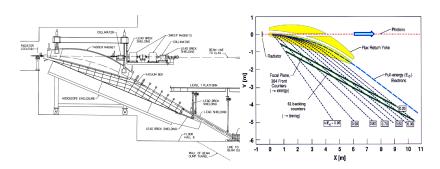

- Energy loss correction
- Compute scale factor & MMSQ Selection range for each E_{γ} & $\cos \theta_{cm}$ bins
- Add 2.4 GeV (e⁻ beam) dataset
- Systematic Error studies
- Compute E without Machine learning to see effects of ML
- Improve ML tuning
- \circ Measured E into world database \to more constrains on reaction amplitude


Acknowledgements

This work was performed with support from US DOE DE-SC001658, The George Washington University.

Backup Slides

Backup: Constituent Quark Models & LQCD Predictions of Non-Strange Baryon Resonances


Constituent Quark Model

Lattice QCD

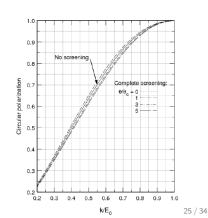
- Constituent Quark Models predicted states: 64 N* & 22 Δ*
- Experimentally confirmed state: 26 N* & 22 Δ*

Backup: Hall B Photon Tagger

- Bremsstrahlung radiation due to slowing of electrons by EM field of radiator (gold foil or thinyo diamond)
- Determine incoming photon energy of $\vec{\gamma} \vec{p} \to \pi^0 p$ by $E_\gamma = E_0 E_e$
- ullet g9a/FROST circularly polarized photons with $E_{\gamma} pprox 0.4 \sim$ 2.4 GeV
- Tagger was built by the GWU, CUA, & ASU nuclear physics group

Backup: Circularly Polarized Photon Beam

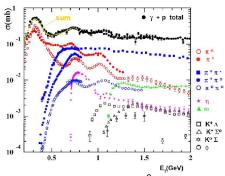
Linearly Polarized Electron Beam

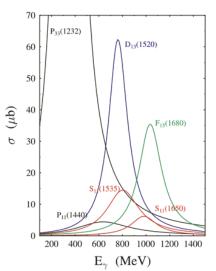

Circularly Polarized Photon Beam

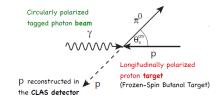
Polarization transfer:

$$P(\gamma) = P(e) \frac{4x - x^2}{4 - 4x + 3x^2}$$

$$x = \frac{k}{E_0} = \frac{\text{photon energy}}{\text{incident electron energy}}$$


H. Olsen and L.C. Maximon, Phys. Rev. 114, 887 (1959)


Backup: Frozen Spin Target


Backup: CLAS g9a/FROST Data

- Select only $\vec{\gamma} \vec{p} \to \pi^0 p$ events
- $\vec{\gamma}\vec{p} \to \pi^0 p$ resonance channels
- Appropriate enegy bins include all resonances (≤ 1500 MeV)

π^0 photoproduction

• From *T Matrix* to *Helicity Amplitudes* of $\vec{\gamma}\vec{p} \rightarrow \pi^0 p$:

$$\langle \mathbf{q} \ m_{s'} | \ T \ | \mathbf{k} \ m_s \ \lambda \rangle = \boxed{\langle m_{s'} | \ \mathbf{J} \ | m_s \rangle} \cdot \epsilon_{\lambda}(\mathbf{k})$$

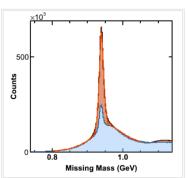
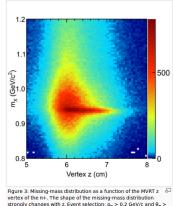
$$\qquad \qquad H_i(\theta) \equiv \langle \lambda_2 | \ \mathbf{J} \ | \lambda_1 \rangle$$

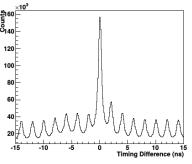
• 4 Complex Helicity Amplitudes:

$$H_{1}(\theta) = \left\langle +\frac{3}{2} \middle| \mathbf{J} \middle| +\frac{1}{2} \right\rangle \qquad H_{2}(\theta) = \left\langle +\frac{1}{2} \middle| \mathbf{J} \middle| +\frac{1}{2} \right\rangle$$

$$H_{3}(\theta) = \left\langle +\frac{3}{2} \middle| \mathbf{J} \middle| -\frac{1}{2} \right\rangle \qquad H_{4}(\theta) = \left\langle +\frac{1}{2} \middle| \mathbf{J} \middle| -\frac{1}{2} \right\rangle$$

Evidence of Hydrogen Contamination on Carbon

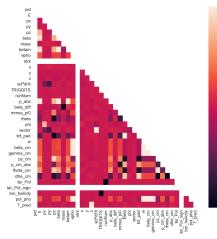

Figure 2: Missing-mass distribution for the π+n channel from -FROST q9a data. W = 1.25 - 1.50 GeV, integrated over all angles. Events in the red histogram are from the butanol target and events in the blue histogram are from the 12C target with z-vertex larger 5.0 cm and smaller than 7.5 cm. The blue histogram is scaled by 5.26. The FROST distribution from the 12C target region show a narrow peak at the mass of then neutron.

strongly changes with z. Event selection: $p_{m} > 0.2$ GeV/c and $\theta_{m} >$ 20°

- \circ Sharp peak at downstream end of Carbon foil \to ice built up while cooling the target
- o Ice formed on the right side of Carbon target: Z-vertex ∈ [6, 7]cm
- o Plots from [Steffen Strauch]'s Analysis page of FROST Wikipage

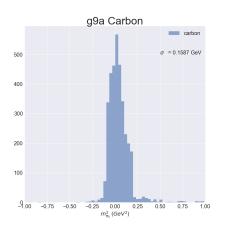
Photon Beam Selection

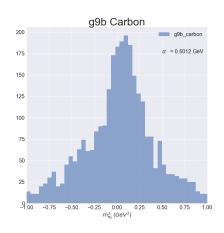
$$\Delta t = t_{pv} - t_{\gamma v}$$
 = time when p was at event vertex $-$ time when γ was at event vertex


- Readings from SC, DC & TOF system to determine t_{pv} & $t_{\gamma v}$
- JLab e^- beam sent in bunches separated by 2 ns
- ullet Neglect events caused by photons emitted from different e^- bunches
- Select out events with $\Delta t \approx 0$

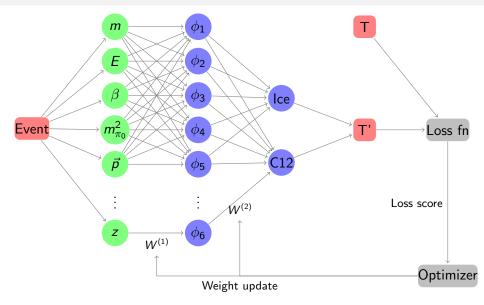
Neural Network Model Setup

- Two fully-connected (dense) neural layers
 - 1 Dense layer with 15 nodes 15 parameters:
 - E, β , β_{diff} , β_m E_{γ} , m, $m_{\pi_0}^2$, pid,|p|, p_x , p_y , p_z , x, y, and z.
 - Too many parameters + insufficient train data → Too specific training → Overfitting (fail)
 - 2 Dense layer with 3 nodes one for each target
 - For each event, this layer returns an array of 3 probability scores (butanol, carbon, or polythene) that sum to 1
- o Optimizer used: AdamOptimizer
- Loss function used Sparse categorical cross entropy:
 - $H_{y'}(y) = -\sum_i y_i' \log(y_i)$,where y_i is the predicted target and y_i' is the true target
- Python and Tensorflow


0.4


Choosing Classifying Parameters

- \circ Choose 10 \sim 15 adequately correlated parameters to avoid overfitting and underfitting
- \circ Higher correlation \rightarrow lesser contribution to classification
 - \circ Lower correlation \to biased training \to overfitting


Training Data for Carbon from g9b experiment

- o g9b-carbon $m_{\pi_0}^2$ peak broader than g9a/Carbon \to No ice on g9b
- o During g9b, Carbon target was moved further in downstream.
- o Shifted Z-vertex of g9b-Carbon events to use as training events for g9a [F. Klein].
- \circ Failed (under investigation) \to Different training data for carbon used

Neural Network Training Flowchart: ICE vs CARBON

