CLAS12 Run Group B *Electroproduction on deuterium with CLAS12*

- RG experiments
- Spring run overview
- Data processing status
- Performance of neutron detectors (CND, BAND)
 - First results shown at DNP (nDVCS, dDVCS)
 - Plans for fall/winter run

Silvia Niccolai, IPN Orsay, on behalf of RG-B

CLAS Collaboration meeting, JLab, 11/13/2019

CLAS12 Run Group B: experiments

E12-07-104	Neutron magnetic form factor	G. Gilfoyle	A-	30
E12-09-007a	Study of parton distributions in K SIDIS K	. Hafidi→W. Armstrong	A-	56
E12-09-008	Boer-Mulders asymmetry in K SIDIS	M. Contalbrigo	A-	56
E12-11-003	Deeply virtual Compton scattering on the neutron	S. Niccolai	A (H	I) 90
E12-09-008b	Collinear nucleon structure at twist-3 in dihadron SID	IS S. Pisano→M. Mirazit	a -	-
E12-11-003a	In medium structure functions, SRC, and the EMC eff	ect O. Hen	-	-
E12-11-003b	Study of J/ψ photoproduction off the deuteron	Y. Ilieva	-	-
E12-11-003c	Quasi-real photoproduction on deuterium	F. Hauenstein	-	-

Common features to all experiments of RG-B:

- Liquid deuterium target
- Beam energy: « 11 » GeV

2019/2020 schedule:

- spring (2/8/19 3/19/19)
- fall/winter (11/25/19 12/19/19 + 1/8/20-1/29/20)

Run group B: experimental setup

Run Group B spring: running conditions and statistics

Running conditions:

- Liquid deuterium target
- Same target cell as RGA (L=5 cm)
- Target position at $z \sim -3$ cm
- Beam energy: 10.6 GeV, 10.2 GeV
- Torus field: inbending
- FT-ON configuration
- 2 sectors with LTCC: 3 and 5
- RICH in sector 4
- Trigger: same as RGA but without FT
 - ✓ electron trigger
 - ✓ 2 muons opposite sectors
- At 50 nA, trigger rate ~14 kHz

• Production beam current: 50 nA (~25% less than necessary for $L=10^{35}$ cm²/s)

Statistics for the spring run:

- 237 « good » production runs
- 10 empty target runs
- 13 low current runs
- ~9.7 B triggers at 10.6 GeV, 11.7 B at 10.2 GeV
- Average beam polarization ~86% (22 Moeller runs)
- ~21.8 PAC days \rightarrow ~24% of the approved beam time

RG-B spring: data and calibrations quality

RG-B spring: 34 runs for DNP cooking

Electrons per trigger per sector

CND calibration quality and timing performances

CND neutron detection efficiency

CND/CTOF charged particles veto

Problem:

CVT tracking efficiency not uniform nor $100\% \rightarrow$ charged particles contamination among « neutral » candidates

Solution:

CTOF/CND-based veto

Criteria:

- Minimize charged particles, maximize neutrons
- Use edep, position, and hit/layer multiplicity

- If an event was in CTOF only:
 - total energy for the event is < 18 MeV
- If an event was in CND and CTOF:
 - CND event energy is < 30 MeV, and CTOF event energy is < 10 MeV, and layer multiplicity is exactly 1
 - total event energy is < 10 MeV and layer multiplicity is exactly 2
- If an event was in CND only:
 - * total event energy > 10 MeV and hit multiplicity is < 3
 - Total event energy ≤ 10 MeV and hit multiplicity is < 4

Implementation in COATJAVA almost complete:

- new CND and CTOF clustering
- changes to EB

Plans for PID for charged...

Recommissioning of BAND

Work by E. Segarra et al. (MIT) and F. Hauenstein (ODU)

BAND analysis: high-x tagged DIS

<u>Final results for tagged DIS will be</u>: $N(Q^2, hi-x', p_n, \theta_{nq}) / N(Q^2, low-x', p_n, \theta_{nq})$

Data from DNP cooking ~3.5% of all RG-B data

- Good statistics above background in the hi-x' region.
- Estimation of background level via event-mixing method.
- Work ongoing on simulations for acceptance corrections with GEMC

Work by E. Segarra et al. (MIT) and F. Hauenstein (ODU)

K. Price (DNP'19)

1006

θ(γ)

nDVCS analysis: final-state selection

ed→enγ(p)

150 φ(γ)

TTL

K. Price (DNP'19)

nDVCS analysis: final-state selection

ed→enγ(p)

K. Price (DNP'19)

$e^{d \rightarrow en\gamma(p)}$ nDVCS analysis: exclusivity cuts (CD-FT)

nDVCS analysis: results

Coherent DVCS on deuterium

A. Biselli (DNP'19)

Spin 1 9 GPDs at LO 5 vector (unpolarized) 🚽 $H_1^i, H_2^i, H_3^i, H_4^i, H_5^i$ 4 axial (polarized) $\tilde{H}_1^i, \tilde{H}_2^i, \tilde{H}_3^i, \tilde{H}_4^i$ $A_{LU}(\phi) = \frac{x_A(2-y)\sqrt{\frac{-\Delta^2(1-y)}{Q^2}}}{2-2y+y^2}$ $\times \Im m \frac{2G_1 \mathcal{H}_1 + (G_1 - 2\tau G_3)(\mathcal{H}_1 - 2\tau \mathcal{H}_3) + \frac{2}{3}\tau G_3 \mathcal{H}_5}{2G_1^2 + (G_1 - 2\tau G_3)^2}$ $\times sin(\phi)$ _∞Cone angle Beta vs P 1.0 70 1.03 60 0.8 50 β ... 40 30 0.4 20 10 0.2 Deuterons 0 5.0 0.0 2.0 3.0 4.01.0 0.0 2 4 p [GeV] M_{evx} [GeV]

RG-B part 2: fall/winter run

Run plan:

- ✓ Same detector configuration as RG-B spring (FT on, LTCC 3-5, RICH 4)
- ✓ One new trigger bit (opposite sectors, opposite charge, no EMAX) for the new RG proposal
- ✓ Beam energy ~10.5 GeV?
- ✓ Production current = 50 nA
- ✓ Same frequency of special runs *December:*
- Torus inbending
- Low-energy (2 pass) run for BAND calibration: December 17-19

January:

- Torus outbending (to be confirmed)
- New scattering chamber to reduce DC occupancies and allow higher current (under construction)

Experiment readyness:

- All detectors are back on, cosmics/calibrations ongoing
- Target underwent maintenance (replaced sensor), now operating with LD2
- Trigger road dictionaries for outbending torus being prepared

Run coordinators:

S. Stepanyan, M. Contalbrigo, D. Sokhan, S. Niccolai, J. Gilfoyle, V. Kubarovsky, B. Mc Kinnon

Monitoring coordinator: Y. Ilieva Chef: Z. Zhao Trains: A. Movsisyan, Analysis coordinator: S. Niccolai

Summary and plan

• RG-B has 7 experiments, sharing the common goal to advance in the multi-dimensional imagining of the nucleon, disentangling the quark flavor dependence

- Strictly linked to RG-A \rightarrow same running conditions (beam energy, target cell, magnetic fields)
- Detector configuration: same as RG-A (+LD2) + BAND
- The spring run corresponds 24% of the approved beam time
- Beam energy reduction $10.6 \rightarrow 10.2$ GeV affected mainly J/ ψ experiment
- Offline data processing for monitoring and calibrations well established
- Good performances of CND and BAND
- 7% of spring run cooked for DNP
- Preliminary BSA for nDVCS and pDVCS obtained
- Promising studies on dDVCS
- Fall/winter run approaching, all is ready

Back-up slides

RG-B spring: data quality of selected runs

E12-07-104: Measurement of the neutron magnetic form factor at high Q² using the ratio method on deuterium

Spokespersons: W. Brooks, G. Gilfoyle, K. Hafidi

- Both particles of the two quasi-elastic final states will be detected in CLAS12
- Neutrons will be detected in the FEC, PCAL and FTOF
- Neutron efficiency must be frequently monitored to minimize systematics
- Full torus field, inbending
- Approved for 30 days of running

E12-11-003a: In medium proton structure functions, SRC and the EMC effect measured with CLAS12 and the Back Angle Neutron Detector

Spokespeople: O. Hen, L. Weinstein, H. Hakobyan and E. Piasetzky

Study of J/ψ photoproduction off deuteron

Spokespeople:

Y. Ilieva, B. McKinnon, P. Nadel-Turonski, V. Kubarovsky, S. Stepanyan, Zh.W. Zhao

Why J/ψ ?

- Small transverse size: $r_{\perp} \sim 1/m_c = 0.13$ fm
- Large t at threshold, $|t_{min}|$ =1.7 (GeV/c)²
- $b \sim 1/|t|^{1/2} = 0.2 \text{ fm}$
- The $c\overline{c}$ couples to gluon field in the target
- \rightarrow Process dominated by **multi-gluon exchange**
- Probes the **short-range structure** of the target

Experimental configuration

- Unpolarized LD2 target and 11-GeV electron beam, L=10³⁵ s⁻¹cm⁻².
- Standard CLAS electron trigger and a Muon trigger (established during RGA).
- Charged-hadron detection in the Forward and Central Detectors.
- Neutron detection in the Forward Detector (will look for CND capabilities as well).
- Full torus field, electrons in-bending.

Goals: determine the cross sections of:

- Quasi-free photoproduction off **neutron**: $\gamma(n) \rightarrow J/\psi n$
 - Search for isospin partners of LHCb pentaquarks
 - Test bound-nucleon gluonic form factors
- Final-State Interactions (J/ψN rescattering)
 - Estimate $\sigma_{J/\psi N}$
- **Coherent** photoproduction: $\gamma d \rightarrow J/\psi d$
 - Study gluonic form-factor of deuteron

BAND: current calibration results

E12-09-008: Boers-Mulders asymmetry in K SIDIS

Spokespersons: H. Avakian, M. Contalbrigo, K. Joo, Z. Meziani

Goal: measurement of spin azimuthal asymmetries in K-SIDIS

 \rightarrow transverse momentum dependence of valence quark transverse spin distributions

 \rightarrow spin-orbit correlations

Azimuthal Modulations of F_{UU}

$$\frac{d^{\delta}S^{ep \to e'hX}}{dx \, dy \, dz \, df \, dP_{h^{\wedge}}^2} \propto \{F_{UU,T} + eF_{UU,L} + \sqrt{2e(1+e)}\cos(f)F_{UU}^{\cos(f)} + escos(2f)F_{UU}^{\cos(2f)}\}$$

- **RICH** is required for kaon ID
- 56 approved days, 50% (27 days) outbending (opposite field polarity for systematic checks)
- Proton- and deuteron-target data will be combined for flavor separation

E12-09-007a: Study of partonic distributions in SIDIS K production

Spokespersons: H. Avakian, F. Benmoktar, A. El Alaoui, <u>K. Hafidi</u>, M. Mirazita Contact person: W. Armstrong

Goal: measure **multiplicities** for various hadrons (π^+ , π^- , π^0 , K^+ , K^- , K_s^0) on deuterium, for 0.05< *x* <0.7

 \rightarrow Measure **fragmentation functions** and their Q² dependence

→ Extract strange quark parton distribution functions

- 56 PAC days (including 2 days of diagnostics)
- H- and D-target data will be combined
- **RICH** necessary for kaon ID
- 50 % of beam time with reverse magnetic field

Need **both torus field settings** to eliminate systematic associated with different-charge acceptances.

E12-09-008b: Higher-twist collinear structure of the nucleon through di-hadron SIDIS on unpolarized hydrogen and deuterium

Also: 3D extraction of the BSA in (x_B, z, m_{pp}) bins on proton (RG-A) and deuteron (RG-B)

Measuring on both proton and deuteron will allow flavor decomposition

E12-11-003: DVCS on the neutron

 $ed \rightarrow e(p)n\gamma$ Fully exclusive final state: CLAS12+FT+CND

Spokespersons: A. El Alaoui, V. Kubarovsky, S. Niccolai, S. Pisano, D. Sokhan

Flavor decomposition of parton distributions

• Proton and neutron have different flavor compositions \rightarrow observables on these two target types are linked to different mixtures of quark structure functions

Virtual-photon asymmetry from DIS

$$A_{p}^{\pi^{+}-\pi^{-}}(x) = \frac{4\Delta u_{V}(x) - \Delta d_{V}(x)}{4u_{V}(x) - d_{V}(x)} \qquad A_{d}^{\pi^{+}-\pi^{-}}(x) = \frac{\Delta u_{V}(x) + \Delta d_{V}(x)}{u_{V}(x) - d_{V}(x)}$$

SIDIS pion asymmetry (integrated over k_T)

$$\sigma_{KM}^{K^{+}}(p) = 4h_{1L}^{\perp u}H_{1}^{\perp(1/2)u/K^{+}} + h_{1L}^{\perp d}H_{1}^{\perp(1/2)d/K^{+}} + h_{1}^{\perp \bar{s}}H_{1}^{\perp(1/2)\bar{s}/K^{+}}$$

$$\sigma_{KM}^{K^{+}}(n) = 4h_{1L}^{\perp d}H_{1}^{\perp(1/2)u/K^{+}} + h_{1L}^{\perp u}H_{1}^{\perp(1/2)d/K^{+}} + h_{1}^{\perp \bar{s}}H_{1}^{\perp(1/2)\bar{s}/K^{+}}$$

SIDIS $A_{UL}^{sin2\phi}$ for K⁺

Compton form factors from DVCS

Experiments on proton and deuterium targets must be performed to extract the flavor dependence of the various kinds of parton distributions

E12-09-007a: Study of partonic distributions in SIDIS K production

Spokespersons: H. Avakian, F. Benmoktar, A. El Alaoui, K. Hafidi, M. Mirazita

Goal: measure **multiplicities** for various hadrons (π^+ , π^- , π^0 , K⁺, K⁻, K⁰_s) on deuterium, for 0.05< *x* <0.7 \rightarrow improve parametrizations of **fragmentation functions**

 \rightarrow strange parton distribution functions

- Part of an extensive program on unpolarized and polarized proton and deuterium targets (RG-C)
- 56 days approved
- **RICH** necessary for kaon ID

In Medium Proton Structure Functions, SRC and the EMC Effect measured with CLAS12 and the Back Angle Neutron Detector

Spokespeople: O. Hen, L. Weinstein, H. Hakobyan and E. Piasetzky

- Is the nucleon modification of the EMC-Effect due to Mean-Field nucleons or correlated pairs?
- Measure the **bound proton structure function** as a function of neutron momentum or virtuality in deuterium
 - Similar to nucleon tagging in BoNuS

Build new scintillator-based **Back Angle** Neutron Detector

- 160-170°
- ~ 35% neutron detection efficiency
- ~ 7x7 cm² scintillators
- funded and constructed by Tel Aviv, MIT, ODU, UTSM, and FSU

More details in the BAND section of the ERR

Progress of the experiment

Spring run: $2/8 - 3/19 \rightarrow 39$ days (actual start on 2/10) 75 nA at 50% ABU \rightarrow 126.36 mC Today (6/3/2019): 36.02 mC \rightarrow ~28.5% of the spring run expectations of collected charge We ran so far for 26 days ~67% of the spring-run duration

Fall run: $10/31 - 12/21 \rightarrow 52$ days 75 nA at 50% ABU $\rightarrow 168.48$ mC Total expected charge for 2019 RGB run: 294.84 mC Total number of calendar days: 91 (= half of the approved beam time)

Now we are at 12.2% in terms of collected charge, and used up 28% of the 2019 running time

E12-11-003a: In medium proton structure functions, SRC and the EMC effect measured with CLAS12 and the Back Angle Neutron Detector

Spokespeople: O. Hen, L. Weinstein, H. Hakobyan and E. Piasetzky

Study of J/ψ photoproduction off deuteron

Experimental Configuration

- Unpolarized LD2 target and 11-GeV electron beam, L=10³⁵ s⁻¹cm⁻².
- Standard CLAS electron trigger and a Muon trigger (established during RGA).
- Charged-hadron detection in the Forward and Central Detectors.
- Neutron detection in the Forward Detector (will look for CND capabilities as well).
- Full torus field, electrons in-bending.

Expected yields

- Quasi-free production off neutron: ~30 J/ ψ per day (including both, e⁺e⁻ and $\mu^+\mu^-$ decays).
- Incoherent production: < 3 J/ ψ per day (including both, e⁺e⁻ and $\mu^+\mu^-$ decays).
- Coherent production: ~ $0.3 1 \text{ J/\psi}$ per day (including both, e⁺e⁻ and $\mu^+\mu^-$ decays).

BAND: description and installation

Back Angle Neutron Detector

- 160 170°
- ~ 40% neutron efficiency
- Plastic scintillator
- 116 7.2 x 7.2 cm² bars read out on both ends
- Veto Layer
 - 24 2 x 7.2 cm² bars
 - one 2" PMT per bar
- Installed in the hall on top of SVT cart in August

Run group B: trigger

Electron trigger

НТСС	> 2 phe
ECAL+PCAL	> 250-300 MeV
DC ROAD	Data based
Track-PCALU	Space correlation
Sign of the particle	Negative
Trigger purity	54% of events have PID=11 particle
Current	50 nA
Trigger Rate @50 nA	5 kHz

2-muons opposite-sectors trigger

PCAL	> 10 MeV
ECAL	40 <e<120 mev<="" td=""></e<120>
FTOF-PCALU	Space correlation
DC ROAD	GEMC based
Sign of the particle	Positive and Negative
Trigger purity	28% of events have 2 +/- TB tracks
Current	50 nA
Trigger Rate @50 nA	10 kHz

Main difference with RGA: FT is used to take data but it is not part of the trigger