Nuclear TMDs with CLAS12

Proposition for a RG-D Run Group Proposal

Raphaël Dupré

Established by the European Commission

Run Group Proposal

Nuclear TMDs in CLAS12

W. Armstrong, S. Joosten, Z.-E. Meziani

Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

H. Szumila-Vance

Jefferson Lab, Newport News, VA 23606, USA

R. Dupré

Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France

T. Chetry, L. El Fassi and S. Nanda

Mississippi State University, P. O. Box 5167, Mississippi State, Mississippi 39762, USA

a CLAS Collaboration Proposal

The Nuclear Effects

We discovered nuclear effects at the quark level

- Shadowing, anti-shadowing and EMC effect

The EMC effect remains a mystery to this day

- Meson content induced by NN interaction
- 6, 9, 12-quark clusters
 - Both are excluded by Drell-Yan measurements
- Nucleon size might change \rightarrow bound FF
 - Difficult to prove due to FSI effects
- Q²- or x-rescaling with widely different physical meaning

Resolving the EMC Effect Mystery

Higher precision

- Performed in JLab Hall-C already
- Tough to compete with CLAS12 on this front

New processes

- Tagging/SRC (ALERT, BAND, Bonus)
- Nuclear DVCS (ALERT)
- Nuclear TMDs (This talk !)

Large program

- Missing piece is nuclear TMDs
 - It also involves in-medium hadronization
- Could be easily performed with RG-D and RG-E data

Semi-Inclusive DIS on Nuclei

Understand the hadronization process

- Measuring the characteristic times
- Measuring parton energy loss in QCD medium
- Understanding the pre-hadron structure

Characterization of the QCD medium

- Using parton energy loss (q hat)
 - BDMPS & Kopeliovich et al.
- Characterize both cold and hot nuclear matter
- Understand QCD evolution in medium

Reduce systematic effects on measurements where attenuation needs to be corrected

- Lepton scattering is a unique process for its control over the initial state
- Neutrino experiments
- Nucleon structure in nuclei

$$\hat{q}_F(\xi_N) = \frac{2\pi^2 \alpha_s}{N_c} \rho_N^A(\xi_N) [x f_g^N(x)]_{x \to 0}$$

The HERMES data

Extracting Signal of the TMDs

TMD extraction is simple, in principle

- Each function has a different modulation
- Experimentally, it is a bit more complicated
 - In particular due to the convolution with fragmentation functions

Experimental needs

- Polarized targets
 - Probably not anytime soon for nuclear targets
- High acceptance
 - CLAS12 !

$$\begin{aligned} \frac{d\sigma}{dx_B \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2} &= \frac{\alpha^2}{x_B y \, Q^2} \frac{y^2}{2 \, (1-\varepsilon)} \\ \times \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \cos \phi_h \, F_{UU}^{\cos \phi_h} \\ + \varepsilon \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h} + \lambda_e \, \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \sin \phi_h \, F_{LU}^{\sin \phi_h} \\ + S_{\parallel} \left[\sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right] \\ + S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_h \, F_{LL}^{\cos \phi_h} \right] \\ + |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \, F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right. \\ + \varepsilon \sin(\phi_h + \phi_S) \, F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) \, F_{UT}^{\sin(3\phi_h - \phi_S)} \\ + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_S \, F_{UT}^{\sin \phi_S} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin(2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \\ + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_S \, F_{LT}^{\cos \phi_S} \\ + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\}. \end{aligned}$$

Nuclear TMD

Theory only, no experimental data

- Similarly to GPDs can offer an insight in nucleon modifications in medium
- Offers a view into the transport coefficient of the nuclear matter
 - A controversial question with variations of an order of magnitude between theoretical extractions from data

Asymmetries generated at the partonic level

- Independent of final state effects

Using TMDs for Hadronization

Usual hadronization measurements use outdated methods

- We should use the TMD framework to study semi-inclusive DIS on nuclei
- The sin and cos moments give direct parton level sensitivity to the transport coefficient

Two independent transport coefficient measurements

To be compared with the absorption and the transverse momentum broadening

From Hadronization to Saturation

Saturation is one of the key topics of EIC

- We want to look at the saturation scale in nuclei
- Transport coefficient and gluon saturation scale are the same
 - They inform on the highest density of gluons in the nuclei

$$\hat{q}_F(\xi_N) = \frac{2\pi^2 \alpha_s}{N_c} \rho_N^A(\xi_N) [x f_g^N(x)]_{x \to 0}$$

The hadronization studies will provide an independent result for this

- RG-D will measure it for several nuclei
- Possibility to test the A dependence of the saturation scale

Projections

We made some simulations

- Using GEMC + Full CLAS12 reconstruction

Results for sin moment

- Similar to proton target with slightly less coverage

Maximum of distribution available

- We assumed the same for the cos observables

Summary

We have studied nuclear hadronization and EMC

Both are messy and not well understood

The TMD framework will help

- Different asymmetries are generated at the partonic and fragmentation level
- Different asymmetries allow to cross check the results from the same data set with different observables

This is a modernization of the hadronization studies

- It comes for free in the nuclear data
- Well almost, we would like polarization

So... we will be back next year at the PAC!