A Study of Λ-N Scattering using the g12 experiment

CLAS Collaboration

Joey Rowley, Ken Hicks (Ohio University)

Motivation

 Currently very little data for ΛN

< 1300 events

- Entirely from Bubble Chamber
- AN scattering is important to understand the interior of neutron stars. (Haidenbauer and

Meissner, PRC 72, 044005 (2005).)

- Liquid Hydrogen Target
- p, p', π detected
- Ap scatter elastically

- All standard g12 procedural cuts and corrections are included
 - PID
 - Fiducial
 - Photon beam energy corrections
 - Efficiency corrections
 - Etc....

Data

 π

Data

 π

Sideband Subtraction

Yield

Yield

Yield

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 $P_A = [0.8, 1.0]$

Acceptance

$Acceptance = \frac{Accepted \ pp\pi^{-}}{Generated \ \Lambda p \ scattering}$

Luminosity

$$L_{\Lambda}(E_{\Lambda}) = \frac{\rho_T * N_A * l}{M} * N_{\Lambda}(E_{\Lambda})$$

- ρ_T : density of the target
- *N_A*: Avogadro's number
- M: molar mass of Hydrogen
- *l*: travel distance of Λ
- $N_{\Lambda}(E_{\Lambda})$: yield in a certain energy range

Photon Beam

Preliminary Results

- Black: Existing data from Kadyk *et al.*
- Green: Measurements from this study.
- Our measurements trend lower than existing world data.

J.A. Kadijk, G. Alexander, J.H. Chan, P. Gaposchkin, and G. Trilling, Nucl. Phys. B27, 13 (1971)

Preliminary Results

Systematics (Preliminary)

Cuts	Error (%)
Vertex	2.8
M (p π ⁻)	10.4
ММ (Хр, Лр)	8.1
PID	0.2
pp events	8.7
Fit Function	12.0

Total Systematic: ~20%

Why Low Cross Section? $pp \rightarrow pp$ scattering

• pp \rightarrow pp events can also result in the same final state.

pp → pp events

Events need to be removed for incident p events but not for incident π^{-}

~20% Effect

pp → pp events

Summary

- Double the statistics as previous experiments
- Previous data could be excluding pp-scattering events
 - evidence to suggest that it does
- There is some agreement to theory but more work needs to be done.
- Results are still preliminary.

P1, P2

22

pp → pp events

Comparison with and without pp-cut

Trigger Efficiency

hit proton sector 1

-10

-20

-30^L

10

20

30

40

50

0.3 0.2

0.1

24

paddle

Momentum vs. Energy $P_{\Lambda} vs. E_{\gamma}$

 $N_{\Lambda}(E_{\Lambda})$

M. E. McCracken et al. PHYSICAL REVIEW C 81, 025201 (2010)

Motivation - Hyperon Puzzle

- Hyperons may exist inside neutron stars
 - results in a softened
 Equation of State
- Better data for AN and ANN is needed

Diego Lonardoni, Alessandro Lovato, Stefano Gandolfi, and Francesco Ped-eriva. PRL, **114**, 092301 2015.