

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Physics Motivation

- The 3D nucleon structure in momentum space can be described by TMDs
- A way to acess these properties is the semi inclusive deep inelastic scattering

Physics Motivation

$$d\sigma = d\sigma_0 (1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos2\phi} \cos2\phi + \lambda_e A_{LU}^{\sin\phi} \sin\phi)$$

$$BSA = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{A_{LU}^{\sin\phi}\sin\phi}{1 + A_{UU}^{\cos\phi}\cos\phi + A_{UU}^{\cos(2\phi)}\cos(2\phi)}$$

Focus of this study:
$$A_{LU}^{\sin\phi} = \sqrt{2\varepsilon(1-\varepsilon)} \frac{F_{UU}^{\sin\phi}}{F_{UU}} \sim e(x)$$

- → The chiral-odd, twist 3 distr. function e(x) is related to the nucleon sigma terms of the quark chromo magnetic dipole moment
- \rightarrow Essential inputs for the CP-odd pion-nucleon couplings
- \rightarrow Main contributors of long range CP-odd nuclear forces

Past: Measurements have been performed with CLAS, HERMES and COMPASS

Advantages of CLAS12 \checkmark Significantly higher statistics Extended kinematic coverage (Q², P_T)

Experimental Setup

→ Data recorded with CLAS12 during fall of 2018

→ 10.6 GeV electron beam → 85 % average polarization → liquid H_2 target

→ Analysed data ~ 3 % of the approved RG-A beam time

Electron ID

- **1.** PCAL fiducial cuts
- 2. DC fiducial cuts for the 3 regions
- 3. PCAL energy deposition > 0.07 GeV eventbuilder: > 0.06 GeV

GeV

- 4. Calorimeter sampling fraction: 3 sigma region
- **5.** p_e > 2.0 GeV
- **6.** z-vertex cut [-11, +9] \rightarrow 2 % level of the maximum

Hadron ID

- 1. DC fiducial cuts for the 3 regions
- 2. Final selection based on TOF
 - → Maximum likelyhood PID from eventbuilder with $\chi^2 < 3.0$
 - → Provides similar results as a custom maximum likelyhood PID without event weighting

11/14/2019

Photon ID

2. Cut on the β vs p distribution from PCAL

Event selection and kinematic cuts

<u> π^0 selection</u>:

- $E_v > 0.6 \text{ GeV}$ $\alpha(e-\gamma) > 8^\circ$ all 2y pairs
- \rightarrow 2.2 σ cut around the peak positions
- \rightarrow sidebands are used to estimate the asymmetry of the background
- \rightarrow A sideband subtraction has been done

Kinematic cuts for all pions:

minimal electron energy: 2.0 GeV minimal pion energy: 1.25 GeV

DIS cut: $Q^2 > 1 \text{ GeV}^2$ W > 2 GeV

Additionally: Cut on the final state hadron momentum fraction z

0.3 < z < 0.7

 \rightarrow z > 0.3 removes the "target fragmentation region"

 \rightarrow z < 0.7 removes contamination by pions from exclusive channels

Beam spin asymmetry

$$BSA_i = \frac{1}{P_e} \cdot \frac{N_i^+ - N_i^-}{N_i^+ + N_i^-} \qquad P_e = 85 \% : \text{ average } e^- \text{ beam}$$
polarisation

2 dimensional analysis

➔ Nearly flat Q² dependence at high Q²

→ Increase for large P_T and large x_B

multidimensional analysis

5 bins in \mathbf{Q}^2 , 3 bins in $\mathbf{x}_{\mathbf{B}}$ and $\mathbf{P}_{\mathbf{T}}$, 1 bin in \mathbf{z}

Systematics: Acceptance effects

 $\pi^+ \phi$ acceptance

z = 0.35

Acceptance for z = 0.35

z = 0.65

Acceptance for z = 0.65

0.35

0.25

0.2

0.15

0.05

z = 0.45

• Smooth acceptance curves

Φ

• If they exist, acceptance effects due to the finite bin size only around $\phi = 0$

-

0.35

0.3

0.2

0.15

0.1

0.05

Systematics: acceptance effects

MC for π^+ :

genearated (with experimental BSA)

implemented:

→ fit to exp. Result $A_{LU}^{sin\phi} = -0.00285$ $+ 0.05787 * z_{gen}$

reconstructed

Systematics: Acceptance effects

MC for π^0 :

reconstructed

Systematics: Dependence of the result on the data quality

Systemtics: Uncertainty from the PID

 \rightarrow Small effect (requires final statistics for precise results)

Systematics: Additional effects

- i) Systematics of the beam polarisation $\sim 3 4$ %
 - → Can be easily calculated when final value for the statistical and systematic uncertainty of the polarisation measurement is available
- ii) Subtraction of the background asymmetry for $\pi^{\scriptscriptstyle 0}$

Conclusion and Outlook

- A scheme to refine the eventbuilder PID has been developed
- CLAS12 enables the extraction of SIDIS pion BSA moments with high accuracy in an extended kinematic range.
- $F_{LU}^{\sin\phi}/F_{UU}$ is positive for π^+ and π^0 and close to zero or slightly negative for π^- .
- Already with only 3 % of RGA we can achive a precision that is equal or better than CLAS6
- A multidimensional binning becomes possible for the first time with CLAS12
- The analysis is ongoing on the way to a first publication ...

