

E. Pasyuk

Test goals

- Validate simulations by measuring radiation dose at various locations around the target
- Measure occupancies and the leakage currents in the silicon sensors
- Measure rates and occupancies in all CLAS12 detectors

Nuclear target test run wiki: <u>https://clasweb.jlab.org/wiki/index.php/Nuclear_target_test</u>

Our regular dosimeters

- Photons (X and gamma rays) with energies between 5 keV to 20MeV with a detection range of 5 mrem to 1000 rem.
- Beta particles with energies greater than 150 keV(expressed as average energy) with a detection range of 20 mrem to 1000 rem.
- Fast neutrons with CR-39: 40 keV to 40 MeV with a detection range of 20 mrem to25rem.
- Thermalized neutrons with CR-39: less than .5 KeV with a minimal detection range of 10 mrem to a maximal detection range of 5 rem.
- Cost \$40/piece. Reading off-site. Turnaround time 10 days.

Real time dose monitoring

- BF₃ proportional counter with polyethylene moderator
- B¹⁰+n->Li⁷+He⁴ ,E>0.84 MeV
- Power supply and front-end is provided by RadCon
- DAQ: Connect to discriminator/scaler in EPICS
- Mount two detectors on the target tube upstream of the solenoid
- Another two on the corners of the CVT insertion cart
- Install before RGB
- After RGB install gamma monitor.

Status: Design of mounts is underway and coordinated with magnet group. Cables ordered. We will use JLab discriminators and read to EPICS.

Jefferson Lab

Radiation monitors on CVT Cart

E. Pasyuk CLAS Collaboration meeting

November 12-15, 2019

	\checkmark	
	20	

		FAST NEUTRON REGION							
Neutron Energy	Element Of Interest	Nuclear Reaction	Half-Life Of Product Nucleus	R/X Available Forms	Typical Purity (Percent)	Notes	Cross- Section (millibarn	15)	
0.1 MeV	Nb	Nb ⁹³ (n.n')Nb ^{93m}	13.6 y	Nb	99.837	4	75.2		
0.6 MeV	Np	Np ²³⁷ (n,f)Ba ¹⁴⁰	12.8 d	Np	99.9	1	1312		
0.8 MeV	Rh	Rh ¹⁰³ (n,n')Rh ^{103m}	57 m	Rh	99.685	4	733		
1.2 MeV	In	In ¹¹⁵ (n,n')In ^{115m}	4.5 h	In	99.99	4	170		
1.4 MeV	Th	Th ²³² (n,f)Ba ¹⁴⁰	12.8 d	Th	99.959		269		
1.5 MeV	U-238	U ²³⁸ (n.f)Ba ¹⁴⁰	12.8 d	U	99.942	1,5	296		
2.2 MeV	Ti	Ti ⁴⁷ (n,p)Sc ⁴⁷	3.43 d	Ti	99.876		21.4		
2.8 MeV	Zn	Zn ⁶⁴ (n,p)Cu ⁶⁴	12.8 h	Zn	99.99	4	30		
2.8 MeV	Ni	Ni ⁵⁸ (n,p)Co ⁵⁸	72 đ	Ni	99.981	2,4	109	5	
2.9 MeV	\$	S ³² (n,p)P ³²	14.3 d	S,(NH4)2SO	99.977		64	ţ	
3.1 MeV	Fe	Fe ⁵⁴ (n,p)Mn ⁵⁴	310 d	Fe	99.643	4	78		
3.9 MeV	Ti	Ti ⁴⁶ (n,p)Sc ⁴⁶	85 d	Ti	99.876		10		
4.4 MeV	A1	A1 ²⁷ (n,p)Mg ²⁷	9.45 m	A1	99.999		4.12		
6.0 MeV	C1	C1 ³⁵ (n, α)P ³²	14.3 d	NaC1	99.99	4	3		
6.0 MeV	s	S ³⁴ (n,α)Si ³¹	2.62 h	S,(NH ₄) ₂ SO	99.977		3	5	
6.0 MeV	Fe	Fe ⁵⁶ (n,p)Mn ⁵⁶	2.57 h	Fe	99.643	4	1.05		
6.8 MeV	Cu	Cu ⁶³ (n.a)Co ⁶⁰	5.27 y	Cu	99.998	4	0.35		

FAST NEUTRON REGION CONTINUED

Neutron Energy	Element Of Interest	Nuclear Reaction	Half-Life Of Product Nucleus	R/X Available Forms	Typical Purity (Percent)	Notes	Cross- Section (millibarr
6.8 MeV	Mg	Mg ²⁴ (n,p)Na ²⁴	15.06 h	Mg	99.781		1.52
6.8 MeV	Co	Co ⁵⁹ (n,a)Mn ⁵⁶	2.57 h	Co.Co-Al	99.995		0.143
7.2 MeV	A1	A] ²⁷ (n,a)Na ²⁴	15.06 h	Al	99.999		0.693
7.6 MeV	Ti	Ti ⁴⁸ (n,p)Sc ⁴⁸	44 h	Ti	99.876		0.303
11.0 MeV	Nb	Nb ⁹³ (n,2n)Nb ^{92m}	10.15 d	Nb	99.837	4	0.43
11.5 MeV	v	¥ ⁵¹ (n,α)Sc ⁴⁸	44 h	Y	99.975	4	0.08
11.6 HeV	Mn	Min ⁵⁵ (n,2n)Min ⁵⁴	310 d	Mn-Al "Mn-Cu	99.722	3,4	0.244
12.4 MeV	Cu	Cu ⁶³ (n,2n)Cu ⁶²	10.1 m	Cu	99.998	4	0.0915
13.0 MeV	Zr	Zr ⁹⁰ (n,2n)Zr ⁸⁹	79.3 h	Zr	99.739		0.087
13.5 MeV	NI	Ni ⁵⁸ (n,2n)Ni ⁵⁷	36 h	NI	99.981	2,4	0.0056

•Neutron induced reactions. Count decays of product nucleus.

•RadCon used this technique in the past and they have equipment for counting

•Indium foil is a reasonable choice

Standard foils are 0.5-inch diameter

Jefferson Lab

Neutron energy	Reaction	Half-life of product	Cross section
Thermal 0.025 eV	$\ln^{115}(n,\gamma)\ln^{116m}$	54 min	170 barn
Intermediate 1.457 eV	$\ln^{115}(n,\gamma)\ln^{116m}$	54 min	3243 barn
"fast" 1.2 MeV	In ¹¹⁵ (n,n')In ^{115m}	4.5 hour	170 mbarn

- Use Cd covers to filter out thermal neutrons. Cd absorbs neutrons below 0.4 eV
- Two foils: one bare, the other with Cd covers.
- Irradiation time ~ 4-5hours. For "fast" neutrons will get ~60% of maximum activity. For "slow" neutrons close to maximum activity.

Simulated neutron fluency

5 cm LD2 1 nA 1 hour

Jefferson Lab

E. Pasyuk CLAS Collaboration meeting

November 12-15, 2019

Configuration

class

- Beam energy 10+ GeV (and 4 GeV?)
- Targets: LD2, LHe, Pb (0.125 mm), Sn (0.25 mm)
- Torus polarity: electrons out bending
- Solenoid full field
- Trigger: Inclusive electron trigger
- Standard CLAS configuration
- Lower thresholds on CND (?)
- CVT is removed and replaced by two Si sensors
- Dosimetry
- For each target we allocated up to 12 hours of beam including tuning

• luminosity scan

Jefferson Lab

- record rates of all detectors
- record SVT currents and occupancy
- DC occupancy
- Take data. Beam current TBD after luminosity scan. Use CND to detect inclusive eA->e'n
- Install dosimeters and activation foils
- Irradiate dosimeters and foils for 4-5 hours. Record beam current and exposure time.
- Take out dosimeters and foils.
- Pass foils to RadCon for counting

Time estimate

class

- For each target we allocated up to 16 hours
- Transition LD2->LHe 8 hours
- Transition LHe ->Pb 2 days
- Transition Pb -> Sn 1 day

- ERR December 3rd
- Target is ready
- Optimize Installation/measurement schedule
- Design insertion/removal fixture for dosimeters and foils Write TOSP for this procedure
- Fabricate SVT mount and dosimeter insertion system
- Prepare RSAD an other paperwork for the run