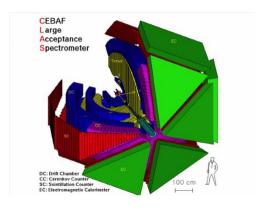


Analysis of $K^0\Sigma^+$ photoproduction off the proton from g8b

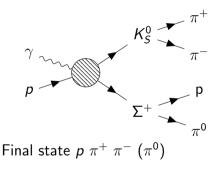
Louise Clark Hadron Spectroscopy Working Group

University of Glasgow

14 November 2019



Objectives and status of analysis


- Objective: Extraction of linear polarisation observables Σ , P, T, O_x , and O_z for the reaction $\gamma p \to K^0 \Sigma^+$ using g8b data
- Status of analysis:
 - Preliminary results have been extracted using simultaneous fit of all 5 observables
 - Beginning validation and systematic studies
- Comparisons to previous work
 - CBELSA/TAPS: R. Ewald et al. Measurement of polarisation observables in $\mathcal{K}^0_S\Sigma^+$ photoproduction off the proton.
 - Physics Letters B, 738:268 273, 2014
 - CLAS: C.S. Nepali et al. Transverse polarization of $\Sigma^+(1189)$ in photoproduction on a hydrogen target in clas.
 - Phys. Rev. C, 87:045206, Apr 2013
- Current FSU g12 analysis, F. Gonzalez, V. Crede (previous talk)

CLAS g8b

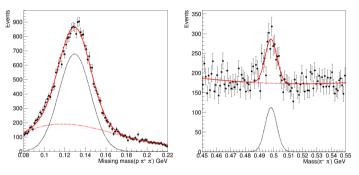
- g8b
- 4.5 GeV electron beam
- Linearly polarised photon beam produced from diamond radiator
 - Photon energy 1.1 2.1 GeV
 - ullet Centre-of-mass energy 1.7 2.2 GeV
- Liquid hydrogen target

Reaction channel

$$\Sigma^+
ightarrow {
m p} \pi^0$$
 Branching fraction=51.6% $lpha = -0.980$

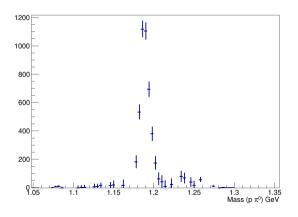
Analysis method

- Identify final state p π^+ $\pi^ (\pi^0)$
- Identify reaction channel using sPlots to obtain signal and background weights
 - M. Pivk and F. R. Le Diberder. splot: a statistical tool to unfold data distributions.arXiv preprint physics/0402083
- Simulation of phase space $\gamma p \to K^0 \Sigma^+$ used for acceptance corrections in likelihood calculations
 - Event generation with https://github.com/lorenzozana/EdGenedgen-event-generator
 - g8b simulation and reconstruction

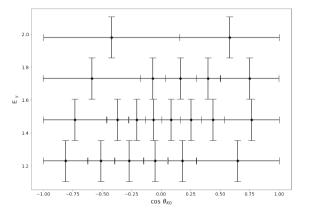

Analysis method

Likelihood sampling with MCMC using pdf as follows

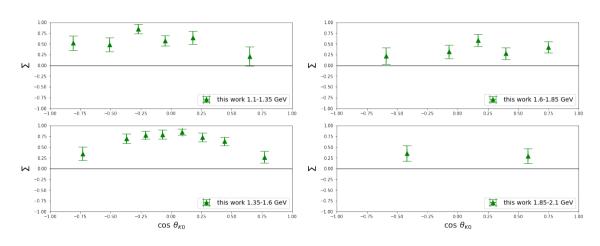
$$\begin{array}{l} \frac{d\sigma}{d\Omega} & \equiv \sigma \left(\phi, \cos \theta_{x}, \cos \theta_{y}, \cos \theta_{z} \right) = & \sigma_{0} \left\{ 1 - P^{\gamma} \sum \cos 2\phi \right. \\ & \left. - \alpha \cos \theta_{x} P^{\gamma} O_{x} \sin 2\phi \right. \\ & \left. + \alpha \cos \theta_{y} P - \alpha \cos \theta_{y} P^{\gamma} T \cos 2\phi \right. \\ & \left. - \alpha \cos \theta_{z} P^{\gamma} O_{z} \sin 2\phi \right\} \,, \end{array}$$


- ullet Preliminary results quoted here are the mean $\pm \sigma$ of the resulting posterior distribution for each observable
- sPlots fits and MCMC studies performed using the HaSpect framework: Derek Glazier talk this afternoon 17:00

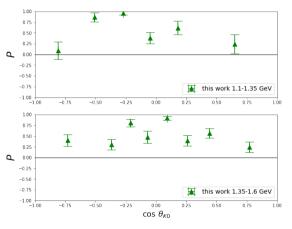
Reaction Channel Identification

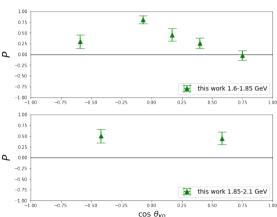

- Use of sPlots technique to separate signal and background
- ullet Model π^0 and K^0 mass as Gaussian peak on polynomial background

Weighted Σ^+ invariant mass

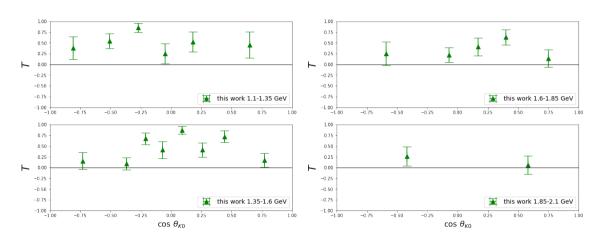

- Mass of reconstructed Σ⁺ with signal weights applied
- PDG mass of $\Sigma^+ = 1189$ MeV
- Total integrated signal events 24,000

Preliminary results

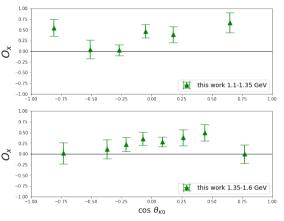


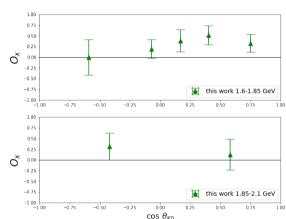

- Preliminary results have been extracted for Σ , P, T, O_x , and O_z
- Current binning
 - 4 energy bins 1.1 GeV 2.1 GeV
 - Variable width bins in $\cos \theta_{K_0}$ to produce integrated signal weight of approximately 1000 per bin
 - 21 bins in total

Preliminary results - Σ

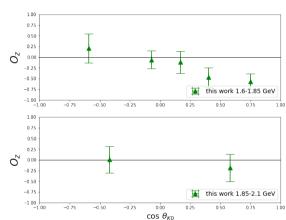


Preliminary results - P





Preliminary results - T


Preliminary results - O_x

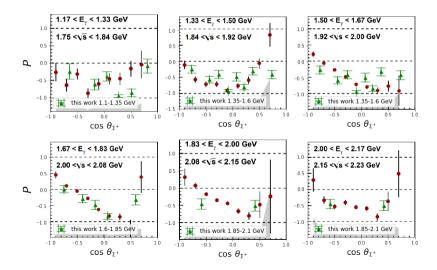
Preliminary results - O_z

Comparison to previous work and current analysis

Experiment	Measurements	\mid $E\gamma$	Notes
CLAS g11	Р	1.0-3.5 GeV	Difference in frame means different
			sign is extracted
			Some agreement with this work
CBELSA/TAPS	Σ	1.15-1.65 GeV	Σ extracted using cross sections
	P	1.05-2.25 GeV	P results agree, but Σ do not
FSU analysis	Р	1.15-3.05 GeV	Results agree (subject to
	C_x , C_z		checking sign)
CLAS g8b	Σ, Ρ, Τ,	1.1-2.1 GeV	This work
	O_x , O_z		

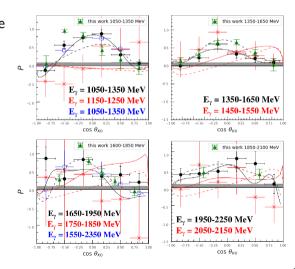
Recoil polarisation - comparison with Nepali

Definition of frames In the Σ^+ rest frame

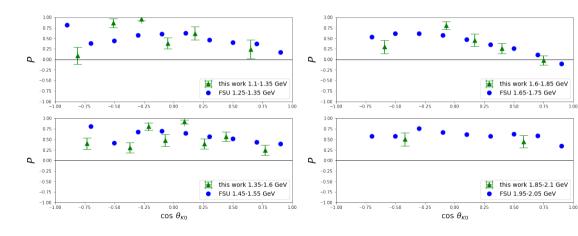

This work: for photon momentum \vec{k} and kaon momentum \vec{q}

$$\hat{z}_{\text{evt}} = \frac{\vec{k}}{|\vec{k}|}, \quad \hat{y}_{\text{evt}} = \frac{\vec{k} \times \vec{q}}{|\vec{k} \times \vec{q}|}, \quad \hat{x}_{\text{evt}} = \hat{y}_{\text{evt}} \times \hat{z}_{\text{evt}}.$$

Nepali work:


$$\hat{n}_z = rac{\hat{p}_{\gamma} \times \hat{p}_{\Sigma^+}}{|\hat{p}_{\gamma} \times \hat{p}_{\Sigma^+}|}, \ \hat{n}_y = \hat{p}_{\Sigma^+}, \ \hat{n}_x = \hat{n}_y \times \hat{n}_z.$$

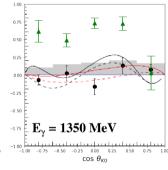
Recoil polarisation - comparison with Nepali

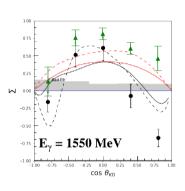


Recoil polarisation - comparison with Ewald

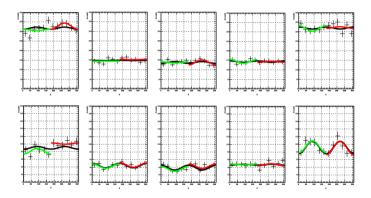
- Latest CBELSA/TAPS (black dots) are compared to the previous CBELSA/TAPS (red crosses) and SAPHIR (blue squares) data
- Curves represent the results of the Bonn–Gatchina-PWA solutions, BG2011-02m (black dashed) and BG2011-02 (black solid), and the K-MAID parametrisations, standard (red solid) and modified to study the origin of the cross section anomaly at the K* threshold (red dashed)

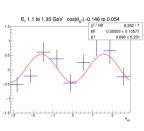

Recoil polarisation - comparison with FSU



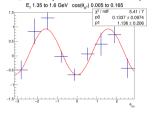

Recoil polarisation - summary

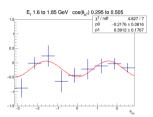
 Preliminary results have reasonable agreement with CBELSA/TAPS, CLAS g11 and g12


Beam asymmetry - comparison with Ewald

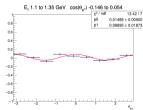


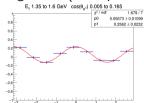
Beam asymmetry - Ewald asymmetries

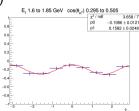


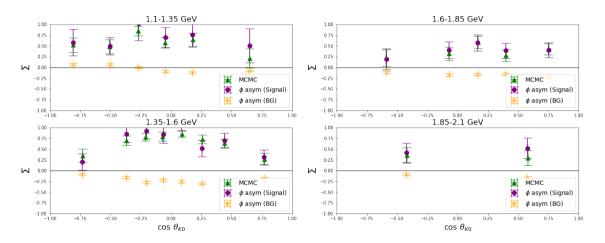

- Fits are made to the modulation of the cross section
- $\bullet~0-180^{\circ}$ and $180-360^{\circ}$ fitted separately and average taken
- Thesis (in German): http://hss.ulb.uni-bonn.de/2010/2044/2044.pdf

Beam asymmetry - extracted with ϕ asymmetry




Signal (example bins)




Background (example bins)

Beam asymmetry - comparison of methods

Beam asymmetry - Summary

- Discrepancy in values obtained when comparing to previous CBELSA/TAPS measurements
- Values derived by this work by two different methods are self-consistent
- Beam asymmetry is present in the background events, and is smaller and of opposite sign to signal

Summary and next steps

- Preliminary results have been obtained from g8b data for Σ , P, T, O_x , and O_z for $\gamma p \to K^0 \Sigma^+$
- These are first measurements of T, O_x , and O_z
- \bullet Comparison to previous measurements of P from CLAS and CBELSA/TAPS show agreement
- \bullet Comparison to previous measurement of Σ from CBELSA/TAPS show discrepancy
- Next steps
 - Systematic studies
 - Toy MC studies
 - Improvements to simulation

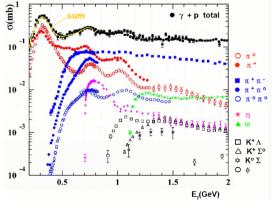
Thanks for your attention

Feedback welcome at: l.clark.1@research.gla.ac.uk

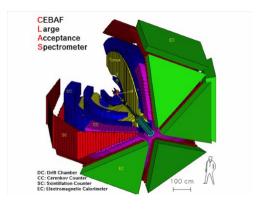
Materials website (work in progress): http://nuclear.gla.ac.uk/~louise/html/

Louise Clark University of Glasgow

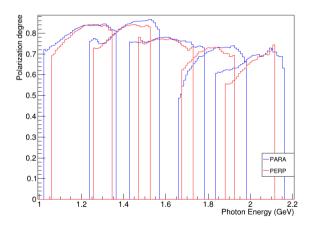
Supplementary material


Measurement of polarisation observables in $K_s^0 \Sigma^+$ photoproduction off the proton. *Physics Letters B*, 738:268 – 273, 2014.

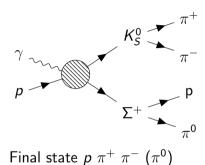
Transverse polarization of $\Sigma^+(1189)$ in photoproduction on a hydrogen target in clas.


Phys. Rev. C, 87:045206, Apr 2013.

Why study this reaction?


- Goal: understanding the baryon excitation spectrum
- Resonances are predicted but many are not yet measured
- Models / Partial Wave Analyses require further constraints beyond cross-section measurements
- Data for the $K^0\Sigma^+$ channel is limited this study will be a first measurement of 3 observables

The experiment


- g8b
- 4.5 GeV electron beam
- Linearly polarised photon beam produced from diamond radiator
 - Photon energy 1.1 2.1 GeV
 - ullet Centre-of-mass energy 1.7 2.2 GeV
- Liquid hydrogen target

Polarised photon beam

- Mean polarization degree approx 0.7
- Systematic error 2-6%

Particle Identification

Particle ID cuts

3 charged particles, 0, 1 or 2 neutral particles in event

Mass and charge of particles compatible with p π^+ π^-

Reaction vertex contained within the target

Tagged photon identified with absolute time difference < 1 ns

$$E_{setting} - 200 MeV < E_{\gamma} < E_{setting}$$

Angular distribution dependance on polarisation observables

$$\begin{array}{l} \frac{d\sigma}{d\Omega} & \equiv \sigma\left(\phi,\cos\theta_{x},\cos\theta_{y},\cos\theta_{z}\right) = & \sigma_{0}\left\{1 - P^{\gamma}\Sigma\cos2\phi\right.\\ & \left. -\alpha\cos\theta_{x}P^{\gamma}O_{x}\sin2\phi\right.\\ & \left. +\alpha\cos\theta_{y}P - \alpha\cos\theta_{y}P^{\gamma}T\cos2\phi\right.\\ & \left. -\alpha\cos\theta_{z}P^{\gamma}O_{z}\sin2\phi\right\}, \end{array}$$

- \bullet ϕ = angle of reaction plane wrt polarisation plane
- $\cos \theta_x$, $\cos \theta_y$, $\cos \theta_z$ = direction cosines of proton in the rest frame of the hyperon
 - y-axis normal to reaction plan
 - z-axis parallel to beam in rest frame of hyperon

Angular distribution dependance on polarisation observables

$$\begin{array}{l} \frac{d\sigma}{d\Omega} & \equiv \sigma\left(\phi,\cos\theta_{x},\cos\theta_{y},\cos\theta_{z}\right) = & \sigma_{0}\left\{1 - P^{\gamma}\Sigma\cos2\phi\right.\\ & \left. -\alpha\cos\theta_{x}P^{\gamma}O_{x}\sin2\phi\right.\\ & \left. +\alpha\cos\theta_{y}P - \alpha\cos\theta_{y}P^{\gamma}T\cos2\phi\right.\\ & \left. -\alpha\cos\theta_{z}P^{\gamma}O_{z}\sin2\phi\right\}, \end{array}$$

- Polarisation observables: Σ , P, T, O_x , O_z
- Polarisation degree, P^{γ}
- Weak decay parameter, α