
CLAS12 DC Tracking with
Machine Learning

V. Ziegler
On Behalf of the CLAS12 AI Project Group

CLAS12 Collaboration Meeting, Nov. 12, 2019

Machine Learning for CLAS12: Motivation
Largest CPU resource driver for event
reconstruction is charged particle tracking

• DC Pattern recognition ~ 2 % CPU usage
• DC hit-based tracking ~ 58% CPU usage
• DC time-based tracking ~ 37% CPU usage

Targeted Areas of Improvement for CLAS12 DC Tracking:

• Processing speed
• More efficient noise rejection
• Combinatorics (ghost tracks)

Combinatorics requires multiple track fits

Segment overlap region yields multiple track candidates

2

AI Project Team

• G. Gavalian (lead) – Neural Network evaluation software integration into CLAS12

software infrastructure.

• V. Ziegler – AI-Assisted tracking code implementation. Benchmarking, testing and

debugging of tracking code.

• Center For Real-Time Computing (CRTC): N. Chrisochoides, P. Thomadakis,

A. Angelopoulos – NN training and interface to CLAS12 framework; computing

resources for the project (GPU farm equipped with high-end NVIDIA V100 GPUs).

Ø Testing different NN to determine which one is most suitable for CLAS12

Ø Writing of software package using Tensorflow/Keras/SciLearn to train drift

chamber data, and run inference.

Ø Development of Python interface for reading HIPO data and writing inference

results into Output.

3

Aims and Approach

• AI project phase 1 goals:
҆Use AI to identify which DC track segments are consistent

with being on-track.
҆Save these data in a dedicated bank that is used by the

tracking code as input, by-passing traditional pattern
recognition phase, and hit-based tracking combinatorial
selection algorithms.

• Approach:
҆Provide samples consisting of hits belonging to track

segments to the neural network: training samples and
testing samples.

4

W
ir
e
 N

b
.

Layer Nb.

Choosing an AI Network

Boosted Decision Trees Multilayer Perceptron Convolutional Neural Network

5

Boosted Decision Trees

• Takes a set of input features and divides data
recursively based on those features.

҆Nodes: split data based on value of input features.
҆Leaves: terminal nodes; gives outcome probability.

• Tree Boosting combines trees into a classifier.

6

Multi-Layer Perceptron

• Collection of connected units or nodes (artificial
neurons) that transmit information from one layer to
the next.

҆Signal at node: real number.
҆Output of each neuron: function of sum of inputs.
҆Edges: connections carrying a weight that adjusts the

learning process.

• Multiple hidden layers. Utilizes supervised learning
(back-propagation for training).

7

Convolutional Neural Network

• Category of deep Neural Networks
commonly used to analyze images.

• Input and output layers with multiple hidden
layers.

• Convolutional layers that convolve the
input and pass it to the next layer.

• Includes pooling layers that streamline
the underlying computation.

• Fully connected layers connecting
every neuron in one layer to every
neuron in another layer.

8

Neural Network Samples Used for Training
• 3 samples with different input parameters tested for training

҆BDT & MLP inputs [sample 6]
• Average wire number of superlayer 1 segment à mapped to

a local point

• Angle between segment local points in superlayer 1 & 2

• Average wire number of superlayer 3 segment à mapped to

a local point

• Angle between segment local points in superlayer 3 & 4

• Average wire number of superlayer 5 segment à mapped to

a local point

• Angle between segment local points in superlayer 5 & 6

҆MLP inputs [sample 36]
• Array of 36 numbers with wire (H.O.T.) number (or average wire number for double hit) for each of the

36 DC layers.

҆CNN inputs [sample 4032]
• Picture with 36 x 112 dimensions passed to the network: if wire (H.O.T.) active à white pixel, else,

black pixel.

9

La
ye

r N
um

be
r

Wire Number
Superlayer 6

Superlayer 1

Superlayer 2

Superlayer 3

Superlayer 4

Superlayer 5

Illustration of Selected Segments from the MLP
after Training

RAW HITS

NN INPUT HITS
(i.e. SEGMENTS)

RECONSTRUCTED TRACK
(CONV. TRACKING)

10

NN TRACK PREDICTION
(highest prob.)

NN TRACK PREDICTION
(lowest prob.)

La
ye

r N
um

be
r

Wire Number

AI Performance Accuracy Categorization
• NN returns a probability (softmax fcn in last layer of classifier) for track candidates.

• Based on this probability a label is created (1: true, 0: false) to flag candidates.

• Categorization of NN outcome based on correct estimation of the track candidate:

҆A1: # samples with correctly identified tracks / # input samples; no mis-identified tracks.
• Only one track identified in given group of hits. This track candidate is the correct one.

҆Ac: # samples with correctly identified track + mis-ided candidates/ # input samples; i.e. contains
False Positives.

• Multiple candidates identified. Contains candidates with highest probability that do not correspond to
correct tracks (False Positives).

҆Ah: # samples with correctly identified tracks / # input samples; with the valid track assigned the
highest probability.

• Multiple candidates identified. Candidates with highest probability that are correctly identified.
҆Af: # samples with correct track not-identified / # input samples; i.e. False Negatives

11

Accuracy Scores for AI Networks Tested

• Preliminary results obtained with training samples
split into multiple sets
• Split data using DC data corresponding to a 50

nA sample (Run 5038)
• Using sectors, 1, 3, 4, 5, 6 for training;
• Using sector 2 for testing.

• Best track finding accuracy with CNN and MLP.

• More tests being done.

12

Accuracy Scores for AI Networks Tested

CNN

A1: # samples with correctly identified tracks / # input samples; no
mis-identified tracks.
Ac: # samples with correctly identified track + mis-ided candidates/
input samples; i.e. contains False Positives.
Ah: # samples with correctly identified tracks / # input samples;
with the valid track assigned the highest probability.
Af: # samples with correct track not-identified / # input samples;
i.e. False Negatives

NN A1 Ac Ah Af Training
Accuracy

Training
Time

Prediction
Time

CNN 0.964 0.301 0.894 0.035 93.4% 457 sec 0.0012 sec

BDT 0.933 0.199 0.919 0.066 99.9% 1.7 s 0.000005 sec

MLP 0.965 0.202 0.921 0.034 94.7% 252 (CPU) 0.000004 sec

13

Implementation in Current Tracking
TDC bank NN bank

Track id Index in TDC bank

Track id 1

• Creation of new bank read to get track seeds at hit-based
level

• Dedicated DC service to use this bank to reconstruct track seeds à
passed to hit-based fitting.

14

Expected Performance Improvement

Traditional Hit-Based Tracking

AI-Assisted Hit-Based Tracking

• Hits-On-Track saved in NN Bank.
• Developed the API to use new bank for seeding

in DC package.
• Dedicated service to run AI reconstruction if

the NN hits bank exists in the HIPO file.
• Python interface to HIPO being developed to

put the results of the NN into a HIPO file.

• Even with unoptimized NN efficiency, the gain in reconstruction
speed will lead substantial time gains in (re-) calibration of data.

15

Current Status & Summary

• DC Tracking modified to work with Neural-Network-predicted Hits-On-Track. (Done)

• Framework in python to train and test track candidates (done)

• Implementation of Neural Network software into workflow (in progress):
҆Interface to HIPO with python to read track candidates.
҆Interface with TensorFlow to get track candidate predictions and write them into the HIPO

file.

• TO-DO
҆Pre-requisite for testing performance in reconstruction (efficiency, accuracy, speed) .
҆Training on HIPO 4 data (varying conditions).
҆Validation of accuracy using data and MC samples (i.e. sample with background-merging).
҆Possibly include the prediction algorithm into decoding.
҆Dedicated clustering service (ongoing).

16

BACK-UP SLIDES

17

Network Configuration
Basic VGG16 model was used to train on track reconstruction images.

Initial sample of event 20K for positive and negative samples.

Inference time ~3ms (GPU NVIDIA Tesla K40m)

Reducing network size will reduce inference time.

For comparison decoding time per event is ~15ms.

18

DC
Reconstruction

NN-selected
Hits

Filter
NN emulator with
100% track finding

efficiency

Filter
NN filter (currently
~93% track finding

efficiency)

Interface to
HIPO to write
NN predicted
bank to event

DC rec. implementation
tested

Tested for 100% NN Eff.

Use non-NN selected hits to find tracks
to predicted by NN (validation, Eff.)

Data
(Hits)

GANs (pix2Pix)
One neural network, called the generator,
generates new data instances, while the other, the
discriminator, evaluates them for authenticity; i.e.
the discriminator decides whether each instance
of data that it reviews belongs to the actual
training dataset or not.

20

