BSA from Deeply virtual π^0 electroproduction measurements with CLAS12

Andrey Kim for the CLAS Collaboration University of Connecticut

CLAS Collaboration 2019 November 14, 2019, Newport News, Virginia

Deeply Virtual π^0 Electroroduction

Generalized Parton Distributions (GPDs)

Chiral even GPDs:

 DVCS on unpolarized and polarized targets with polarized beam by HERMES, JLAB and COMPASS

Chiral-odd GPD results:

- Deeply virtual meson production
- Lattice QCD by Göckeler et al

GPDs in deeply virtual exclusive reactions

•
$$\langle F \rangle = \sum_{\lambda} \int_{-1}^{1} dx \mathcal{H}_{0\lambda,\mu\lambda} \left(x, \xi, Q^2, t \right) F \left(x, \xi, t \right)$$

Generalized Form Factor (GFF) $\langle F \rangle$ is a convolution of hard subprocess with GPD *F*

- 4 parton helicity conserving (chiral even) GPDs: H, \tilde{H} , E, \tilde{E}
- 4 parton helicity flip (chiral odd) GPDs: H_T , \tilde{H}_T , E_T , \tilde{E}_T
- functions of three kinematic variables: x, ξ and t

Experimental setup

Forward Detector (FD) TORUS magnet HT Cherenkov Counter Drift chamber system LT Cherenkov Counter Forward ToF System Pre-shower calorimeter E.M. calorimeter Forward Tagger RICH detector

Central Detector (CD) Solenoid magnet Silicon Vertex Tracker Central Time-of-Flight Central Neutron Det. MicroWegas

Beamline
- Photon Tagger
- Shielding
- Polarized Targets

- CEBAF Large Acceptance Spectrometer
- 10.6 GeV longitudinally polarized electron beam
- 85% average polarization
- Liquid hydrogen target
- First CLAS experiment since 12 GeV Upgrade
- The analysis uses 3% of approved beam time

DVMP structure functions

Particle identification

- All final state particles are detected: electron, proton and two photons from π^0 decay
- Invariant mass of two photons is used to select π^0 candidates

Andrey Kim (UCONN)

Exclusive event selection

With all final state particle detected we can consider multiple combinations which allow us to isolate clean exclusive event sample and reject background:

•
$$\vec{e}p \rightarrow epX$$
 • $\vec{e}p \rightarrow e\gamma\gamma X$ • $\vec{e}p \rightarrow ep\gamma\gamma X$

Exclusive variables [sector 1]: e, p, π^0 detected and $MM_{epx}^2 < 1$ GeV²

Andrey Kim (UCONN)

Deeply Virtual π^0 Electroroduction

 MM_{epx}^2 for $\theta_{X\pi} > 2^\circ$

Exclusive variables [sector 1]: e, p, π^0 detected, $MM_{epx}^2 < 1$ GeV², $\theta_{X\pi} < 2^\circ$

10/14

π^0 : Kinematic coverage: W > 2 GeV, $Q^2 > 1$ GeV²

Beam spin asymmetry

$$BSA = \frac{1}{P_b} \frac{N^+ - N^-}{N^+ + N^-}$$

where $P_b = 85\%$ is an average beam polarization

$$BSA = \sqrt{2\epsilon(1-\epsilon)} \frac{\sigma_{LT'}}{\sigma_0}$$

• Statistically significant beam spin asymmetry was observed

$\sigma_{LT'}/\sigma_0$ in Q^2, x_B bins

• The preliminary results are compatible with previous measurements

- CLAS12 preliminary results indicate a promising future for Deeply Virtual π^0 Electroproduction measurements
- 10.6 GeV electron beam extend our reach to the higher kinematic regions
- 85% beam polarization allows us to extract the beam spin asymmetry moments
- These data will provide further insight into chiral-odd GPDs and constrain their parameterizations