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Outline

Intro and physics motivation

DNP 2019 preliminary results recap

Introducing additional modulations and partial waves

Orthogonality of modulations

Monte Carlo studies of asymmetries and orthogonality



C. Dilks  3

Dihadron Process
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Dihadron Fragmentation Function G
1

┴

Matevosyan, et al.
– Phys.Rev. D96 (2017) no.7, 074010
– PoS DIS2018 (2018) 150

● Sometimes called handedness or helicity-
dependent DiFF

● Accessible in the sin(Φ
h
–ΦΦ

R
) modulation of 

dihadron longitudinal beam spin asymmetries 

● Weighted by P
h

┴ / M
h

● Not yet constrained by data; quark-jet 
hadronization model predicts sizable G

1
┴

(integrated 
over M

h
)

Phys.Rev. D96 (2017) no.7, 074010
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Event selection

Both pions in CLAS Forward Detector

Scattered e– in DC and PCAL fiducial volume 

e–Φ p → e–Φ ππ
 
X

Kinematic cuts:
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DNP2019 π+π- Asymmetries
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Beam spin asymmetry modulations

Dihadron structure functions:

● twist 2

● twist 3

Gliske, Bacchetta, Radici
Phys.Rev. D90 (2014) no.11, 114027

m = 1  →  sin(ϕ
h
-ϕ

R
)

m = 0  → sinϕ
hm = 1 → sinϕ

R
m = –1 → sin(2ϕ

h
-ϕ

R
)

● Partial wave expansion of σ
LU

● DiFFs expand in { |L,M> } basis
● ϕ-dependence only depends on M
● L=0 terms identifiable with 1h 
● L=1 terms likely dominant for 2h
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DNP2019 π+π- Asymmetries
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Including additional modulations reveals more to the story
There appears to be a sign change near M

ρ

A
R
 has opposite M

h
 dependence to A

hR

A
h
 is a constant 3-4%

±3.8% polarization scale uncertainty

DNP2019 π+π- Asymmetries
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Partial wave expansion

● twist 2

● twist 3

Gliske, Bacchetta, Radici
Phys.Rev. D90 (2014) no.11, 114027

Modulations: product of two functions

Azimuthal modulation
– ϕ

h
 and ϕ

R
 dependence

– depends on M and Twist

● twist 2

● twist 3

Associated Legendre polynomials
– θ dependence
– depends on L and M

dihadron CoM frame
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Partial wave expansion

● twist 2

● twist 3

Gliske, Bacchetta, Radici
Phys.Rev. D90 (2014) no.11, 114027
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Partial wave expansion

● twist 2

● twist 3

Gliske, Bacchetta, Radici
Phys.Rev. D90 (2014) no.11, 114027
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Orthogonality of Modulations

General modulations are 2-dim Fourier series terms:

● twist-2  x  twist-2

● twist-3  x  twist-3

● twist-2  x  twist-3

● Let m and n be integers
● The azimuthal modulations form an orthogonal set

(for m
1
,m

2
>0)
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Orthogonality of Modulations
● θ dependence is from associated Legendre polynomials P

l,m
(cosθ), which are orthogonal:

ϕ
h

ϕ
R

θ

● CLAS acceptance limits the integration ranges, however, so these modulations 
may no longer be fully mutually orthogonal, given the data yield coverage:

● Inner product includes a weight, otherwise 
there are some linear dependences

● If inner product is not weighted, there is only 
one nonzero overlap for L ≤ 2: 
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Orthogonality of Modulations

The integration limits can be applied by multiplying by an acceptance function

● Option 1: Model acceptance as a Fourier Expansion

● Option 2: Discretize the integrals and fold in the yield distribution over ϕ
h
 and ϕ

R

h, r, t = bin numbers, respectively ϕ
h
, ϕ

R
, θ

D
hrt

 = yield in bin (h,r,t)

f, g = modulations: P
l
m(cosθ)·ΦΦ

t
m(ϕ

h
,ϕ

R
)

● f
hrt

 = f evaluated for bin (h,r,t)

w
h
, w

r
, w

t
 = bin width

N = normalization

Discrete weighted inner product:

Normalization (ensures <ff>=1)
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<fg> Matrices

● First verify orthonormality of 
modulations assuming fully 
uniform azimuthal acceptance

● θ-dependence not included

● Notation:  | L, M >
twist

● Identity matrix → full mutual 
orthogonality
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<fg> Matrices

● Weight with data yield 
distributions

● size of box proportional to |<fg>|
● X drawn on box if <fg> < 0
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<fg> Matrices

Modulations of interest
are at m=1
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<fg> Matrices

● The m=1 modulations are not 
orthogonal, given CLAS 
acceptance

● A fit to sinϕR modulation alone 
will be impacted by 50% of the 
actual sin(ϕh-ϕR) amplitude, and 
vice versa
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<fg> Matrices

● Sinϕh modulation also 
contributes, to a lesser 
extent (20-25%)

● Impacts on m=1 modulations 
are opposite in sign
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<fg> Matrices

● m = –Φ1 modulation also 
needs to be included, 
though some early looks 
show it may be ~0 in data

● -40% impact on sin(ϕh-ϕR)
● -14% impact on sin(ϕR)
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<fg> Matrices

● Some impact from m=2 
modulations, but not much 
from m=-2
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<fg> Matrices
● Now include θ dependence
● Uniform acceptance → almost the identity matrix
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<fg> Matrices ● With CLAS acceptance:
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<fg> Matrices m=1 modulations highlighted for 2 partial waves (L=1 and L=2)
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<fg> Matrices L=1 modulations → story is the same as it was without θ-dependence
L=2 modulations → different set of dominant non-orthogonal modulations
Could fit L=1 set separately from L=2 set for FF partial wave study!
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Monte Carlo Comparison:  Generated  Reconstructed  Data
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MC Asymmetries

MC-generated MC-reconstructed MC-reconstructed and matched

● Asymmetry injection based on 
MC::Particle dihadrons

● Fit MC::Particle dihadrons 
asymmetries

● Uniform generation in ϕh and ϕR
● Asymmetry amplitudes should 

be completely linearly 
independent

● Asymmetry injection based on 
REC::Particle dihadrons; no 
matching to generated 
particles

● Fit REC::Particle dihadrons 
asymmetries

● ϕh and ϕR distributions match 
those from data

● Asymmetry amplitudes’ linear 
dependence can be studied

● Asymmetry injection based on 
MC::Particle dihadrons, which 
have been matched to 
REC::Particle dihadrons

● Fit REC::Particle dihadrons 
asymmetries

● Not much different from the full 
MC-reconstructed set

● Asymmetry amplitudes’ linear 
dependence can be studied

● Asymmetry injection: assign helicities using a random number generator, biased toward the 
desired asymmetry or linear combination of asymmetries

● Let A(ϕ
h
, ϕϕ

R
, ϕ…) be the asymmetry to be injected (dependent on azimuth and other kinematics)

● Generate random number r, with a uniform probability within [-1,+1]
● If r ϕ< ϕA(…) then assign +1 helicity; assign –1 otherwise

Caveat: MC-reconstructed statistics are 
unexpectedly low… still investigating...
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MC-generated Asymmetries

● Fit result always matches injected asymmetry (uncertainty smaller than point size)

● Single-amplitude fits (black points, here for sin(ϕh-ϕR)) agree with multi-amplitude fits (colored 
points), since all modulations are mutually orthogonal (uniform azimuthal acceptance)

Injected 0.1sin(ϕR) Injected 0.1sin(ϕh-ϕR)

Injected 
0.2sin(ϕR)+0.1sin(ϕh-ϕR)+0.2sin(ϕh)
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A
LU

A
LU

Injected Asymmetry: A(ϕh,ϕR) = 0

● Helicity is 50/50 random
● All asymmetries consistent with zero
● Using MC-reconstructed set, not 

matched to MC-generated

Colored points: multi-amplitude fit (same for left and right)

Black points: single-amplitude 
fit to A·sin(ϕh-ϕR)

Black points: single-amplitude 
fit to A·sin(ϕR)

MC-reconstructed Asymmetries
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A
LU

A
LU

Injected Asymmetry: A(ϕh,ϕR) = 0.10sin(ϕR)

● Single fit to sin(ϕh-ϕR) amplitude 
pulled up by ~0.5 of sin(ϕR) 
amplitude, as expected from 
<fg> matrix

● Single fit to sinϕR agrees with 
multi-amp fit
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A
LU

A
LU

Injected Asymmetry: A(ϕh,ϕR) = 0.10sin(ϕh-ϕR)

● Vice versa when we inject 
10% sin(ϕh-ϕR) instead
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A
LU

A
LU

Injected Asymmetry: A(ϕh,ϕR) = 0.10sin(ϕh)

● sin(ϕh-ϕR) single-amp fit is 
pulled up a bit; <fg> matrix says 
~25% of injected sin(ϕh) 
amplitude

● Similarly sin(ϕR) single-amp 
should be pulled down by 
negative ~21%
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A
LU

A
LU

Injected Asymmetry: A(ϕh,ϕR) = 0.10sin(2ϕh-ϕR)

● sin(ϕh-ϕR) single-amp fit is 
pulled down a bit; <fg> matrix 
says negative 40% of injected 
sin(2ϕh-ϕR) amplitude, to -4%

● sin(ϕR) single-amp fit not pulled 
by much (expected –1.4%, but 
error bars too big to see it)
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A
LU

A
LU

Injected Asymmetry: A(ϕh,ϕR) = 0.10sin(ϕR) + 0.12sin(ϕh)

● sin(ϕh-ϕR) single-amp fit is 
pulled up by 50% of injected 
sin(ϕR) amp, plus 25% of 
injected sin(ϕh) amp
● 0.5*0.1 + 0.25*0.12 = 8%

● Similarly for sin(ϕR):
● 1*0.1 – 0.21*0.12 = 7.5%
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A
LU

A
LU

Injected Asymmetry: A(ϕh,ϕR) = 0.10sin(ϕh-ϕR) + 0.12sin(ϕh)

● sin(ϕh-ϕR) single-amp fit:
● 1*0.1 + 0.25*0.12 = 13%

● sin(ϕR) single-amp fit:
● 0.5*0.1 – 0.21*0.12 = 2.5%
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A
LU

A
LU

Injected Asymmetry: A(ϕh,ϕR) = 0.20sin(ϕR) + 0.10sin(ϕh-ϕR) + 0.20sin(ϕh)

● sin(ϕh-ϕR) single-amp fit:
   0.5*0.2 + 1*0.1 + 0.25*0.2 = 25%

● sin(ϕR) single-amp fit:
   1*0.2 + 0.5*0.1 – 0.21*0.2 = 20%
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Conclusions and Outlook

Single-amplitude fits can be biased by non-orthogonal modulations with nonzero amplitudes

● Multi-amplitude fit, implemented via unbinned maximum-likelihood method, agrees well with injected 
amplitudes

● [ vector of single-amp fit results ]  =  [ <fg> matrix ]  *  [ vector of true amplitudes ]

● <fg> matrix is invertible, so it may be possible recover true amplitudes from single-amplitude fits

● These ‘recovered’ amplitudes can be cross-checked with results from multi-amplitude fit

The two most important amplitudes we would like to publish are the least orthogonal (50% overlap)

● Sin(ϕh–ϕR), for constraining G
1

┴  (not yet constrained by any data!)

● Sin(ϕR), for constraining e(x)   (see Timothy’s talk)

● How to proceed toward publication of SIDIS dihadron BSA: 2 papers, or 1 paper?

Up next:

● Multi-amplitude fit to the data, including the most relevant modulations

● Fits to the two partial waves (L=1 and L=2), which are fortunately orthogonal

● Could model acceptance (Fourier series) to obtain ‘analytic’ <fg> matrix
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