Reconstruction accuracy and resolution comparison using exclusive reactions between data and simulation

Kyungseon Joo University of Connecticut

November 14, 2019

Objective

- Studies of tracking accuracy and resolution for the inbending 10.6 GeV data from DNP cooking compared to GEMC simulations for the following exclusive channels:
 - ep -> ep
 - ep -> e p π⁰
 - ep -> e n π⁺

- ep -> e p π⁺ π⁻
- ep -> e p K⁺ K⁻
- UConn group: David Riser, Andrey Kim, Stefan Diehl,
 F.X. Girod, Brandon Clary.

Elastic Scattering

UCONN | UNIVERSITY OF CONNECTICUT

If you know two of these, you can calculate the other three.

Data Run Period	RG-A F18, 10.6 GeV
Total Runs	64
Torus Field	Electron Inbending (full strength)
Location	/work/clas12/rg-a/trains/v16_v2/skim4_inclusive/

Event Generator	Elastic + Radiative Effects (ESEPP)
Total Events Gen	20M
Torus Field	Electron Inbending (full strength)
Torus Field	Electron Inbending (full strength)

:

Elastic Scattering - W spectrum

Elastic Scattering - W spectrum after $\phi_e - \phi_p$ cut

Elastic Scattering - $\phi_e - \phi_p$ spectrum after W cut

Elastic Scattering - p_e and θ_e spectra from data and simulaton

Elastic Scattering - p_p and θ_p spectra from data and simulaton

class

Elastic Scattering - $\theta_e vs p_e$ spectra from data and simulaton

Elastic Scattering - - $\phi_e - \phi_p$ spectra from data and simulaton

Elastic Scattering - W spectra from data and simulaton

Elastic Scattering - W peak and resolution from data and simulaton

Elastic Scattering - $\Delta \theta_e$ spectrum from simulations

class

Elastic Scattering - Δp_e spectrum from simulations

Elastic Scattering - Δp_e spectra using electron angle from data and simulation

Elastic Scattering - $\Delta \theta_p$ spectrum from simulations

Elastic Scattering - $\Delta \theta_{p}$ spectra using electron angle from data and simulation

UCONN | UNIVERSITY OF CONNECTICUT p

Elastic Scattering - ΔE_{beam} spectra using two angles (θ_e , θ_p) from data and simulation

Elastic Scattering - Δp_p spectrum from simulations

UCONN | UNIVERSITY OF CONNECTICUT pp

Elastic Scattering - Δp_p spectra using electron angle from data and simulation

ep -> e p π^0 - MM² spectra from data and simulation

ep -> e p π^0 - MM² vs θ_p spectra from data and simulation

ep -> e p π^0 - MM² spectra from data and simulation

MM2(GeV²)

ep -> e p π^0 - MM² spectra from data and simulation

25

ep -> e p $\pi^+ \pi^-$ MM² spectra from data and simulation

ep -> e p K^+K^- - MM² spectra from data and simulation

Summary

- Extensive tracking accuracy and resolution studies are under way using various exclusive channels.
- The momentum corrections for electrons and hadrons using exclusive channels are under way.
- Next step would be resolution matching between Data and simulations for missing mass, angular and momentum resolutions using DOCA smearing in GEMC.
- GPP type program could be developed if needed, which could save time since the procedure requires many trial and errors.
- Smearing factors could be applied to other analyses such as SIDIS or Inclusive analyses
- The above steps should be repeated as software improves and new cooking data come up.
- Kinematic fitter may be used for exclusive channels: the program is ready but requires accurate covariance matrix elements, which is also essential for alignments.

