

Event Builder Status

N. Baltzell CLAS Collaboration Meeting November 12, 2019

Overview

- The Event Builder is the last CLAS12 service run, after all detectors, and performs a few important tasks:
 - Geometrically associates detector responses into particles
 - Defines event start time(s) based on the best trigger particle candidate
 - Performs a basic, loose particle identification scheme
 - preserving info for easily tightening the criteria downstream
 - Retrieves/analyzes various event-based quantities
 - e.g. helicity state, scalers
 - Writes all info for physics analysis into "DST" HIPO banks
 - Documentation:
 - <u>https://clasweb.jlab.org/wiki/index.php/CLAS12_EventBuilder</u>

Creating Particles

Charged Particles

Neutral Particles

seeded with tracks

seeded with trackless ECAL/CND

Associated detector responses are assigned based on geometric DOCA

Currently loose, flat detector-dependent cuts, with one hit per detector layer per track chosen, based on DOCA. Many-to-one, track-to-TOF relationships accommodate reconstruction of time-based ghost tracks during tracking development (and real TOF hit-sharing).

TODO: Add timing information in matching. Some analyses suggest that the coarse HTCC position resolution warrants special consideration, i.e. HTCC cluster-sharing between tracks, e.g. e^+e^- with small opening angles.

Event Start Time

Choose "Trigger Particle"

- FD track with FTOF hit
 - Highest energy e⁻ else e⁺, if one exists
 - Else highest momentum track, assumed a π
- FT electron
 - In parallel, using <u>"shadow" banks</u> RECFT::Particle and RECFT::Event
 - FT electron with the closest timing match to an FD track (and all p/K/π mass hypotheses)

Construct its vertex time

• Based on path length, mass, momentum

Use nearest RF bunch to assign start time

- NEW: With a correction for z-vertex
 - this is done on a per-track basis, to compensate for systematic errors on z-vertex

Lepton and Neutral Identification

e⁻e⁺ in Forward Detectors

- Charged Track ECAL, HTCC, and FTOF hits
 - PCAL > 60 MeV and HTCC #phe > 2
- ECAL sampling fraction
 - $\pm 5\sigma$ sampling fraction parameterized in momentum, with REC::Particle.chi2pid assigned as N_{σ} from nominal

Neutrals

- Forward Detector
 - n/γ separated based on β

 Photon energy calculated from ECAL sampling fraction
- Central Detector
 - neutron assigned for CND β <0.9

Forward Tagger

- e'/y separated based on hodoscope neutral veto
- Energies based on calorimeter

(neutron momenta assigned based on β)

All ECAL sampling fractions used above are in CCDB, with sector-dependence available, but needs to be updated by calibrators/rungroups based on final calibration.

Charged Hadron Identification

If a track fails e^{-}/e^{+} identification, assume it's a charged hadron and assign its identity based on minimizing the time difference between event start time t_0 and vertex time.

$$\Delta t_i = t_0 - \left[t_{FTOF} - \frac{L}{\beta_i(p)} \right], \quad i = \pi/K/p/d/\dots$$

- If no TOF info, pid=0
- Vetoes from Cerenkov
 - #p.e. greater than 2 and below kaon threshold \rightarrow reassign to π
- REC::Particle.chi2pid
 - a signed-N_{σ} (or a signed- χ) from nominal timing, based on σ per FTOF-paddle, so tightening the requirements can be done with a simple cut on chi2pid
- NEW: if no FTOF/CTOF available, fall back to ECAL/CND/etc.
 - check REC::Particle.status to easily see
- Can be extended to more sophisticated scheme
- Will need updating from RICH

Simulation

DSTs

High level HIPO banks for physics analyses

- Most DST bank names are prefixed by "REC", in event.json
 - <u>https://github.com/JeffersonLab/clas12-offline-software/blob/master/etc/bankdefs/hipo4/</u> <u>event.json</u>
 - REC::Event
 - run/event #, event time, trigger bits, helicity, etc
 - REC::Particle
 - pid, charge, momentum, etc
 - REC:: "ResponseType"
 - e.g. Calorimeter, Scintillator, Cherenkov, Track
 - hit/cluster energies, positions, times, shapes
 - contains pindex link to its particle
 - Note, this only contains responses associated with particles
- Also keep RUN::*, RAW::scaler banks, RAW::epics, and some helicity banks
- NEW: addition of REC:: Particle.vt, per-particle start time (RF- and vz-corrected)

See documentation and release notes: https://clasweb.jlab.org/wiki/index.php/CLAS12_DSTs https://github.com/JeffersonLab/clas12-offline-software/releases

Delayed Helicity (1)

- Accelerator delivers 4 helicity signals:
 - helicity, pair sync, pattern sync, settle
 - can be used for integrity checking, some needed for using pseudo-random generator
- We read and record them all, in two types of hardware, for redundancy and cross-checking
 - FADC: readout on every CODA trigger
 - Scaler: counts latching on helicity states
 - They always agree with each other when easily comparable, but each has their own problems. Scaler turns out not very useful for event-by-event helicity, but still good for beamcharge-asymmetry. FADC has some missed channel readouts, only in low-state, correctible.
- Reporting Styles
 - Direct Reporting (Spring 2018 only)
 - Easy, just read live helicity state from FADC, no significant need for the other signals, corrections, integrity checks
 - Delayed Reporting
 - Fall 2018
 - No online correction available! Need an offline correction ...
 - Spring 2019 and later
 - Online correction available in every event in HEL::online

Delayed Helicity (2)

- For an offline correction, we start by tracking state changes during serial decoding, and populating tag=1 HIPO HEL::flip bank with each state change.
- Analysis written in coatjava to read flip banks, on-the-fly during analysis and provide event-based helicity
 - must address missed readouts due to DAQ deadtime, and FADC partial readouts
 - multiple techniques implemented and compared, e.g.
 - simple walk forward
 - · requires only 8-states, with integrity check along the way
 - pseudo-random generator option
 - requires 30-state initialization, and clock synchronization depending on usage. This is similar to the online correction available as of 2019.
 - allows crossing deadtime gaps, and going all the way to the end of file
 - can consider an "uber" correction to combine the best of all, meanwhile it seems unecessary and the simple walking is sufficient and robust
- Half-Wave Plate
 - Extracted from EPICS archive and populated in CCDB and used in analysis to correct for it
 - In all cases in non-raw HIPO banks, we store both HWP-corrected and raw helicity for validation, with +1/-1/0, for positive/negative/UDF
- Validation
 - Performed across ~100 of files across few runs during development
 - And with help from RG-B and comparison with their online version across many runs
 - Checks out very good, agrees with online correction when available, allows recovery of some cases where online correciton unavabilable, couple issues optimized since 6.3.1
- TODO:
 - standardize post-processing workflow for run-groups, or push towards analysis working with shared software libraries (avoiding post-processing)

Documentation

Linked from the main software documentation wiki:

https://clasweb.jlab.org/wiki/index.php/CLAS12_Software_Center

https://clasweb.jlab.org/wiki/index.php/CLAS12_EventBuilder

https://clasweb.jlab.org/wiki/index.php/CLAS12_DSTs

Please check it out when you have questions/concerns about DST format and Event Builder, and give feedback!

Summary

Updates since June Meeting

Z-vertex correction for event start time, per-particle, used for all timingbased PID

- Charged hadron β calculated (and PID assigned) from non-TOF detectors if TOF unavailable
- Improved delayed helicity correction
 - based on analyzing tag=1 helicity events, multiple methods implemented and compared, required changing user API
 - associated methods to provide timestamp based lookup of tag=1 scaler events
- Doing FT-based start time (and writing RECFT::Particle) even if electron in FD

TODO

- Near Term
 - Switch to trajectory banks for path lengths
 - Did the groundwork for EB, ready on a branch
 - Requires all other reconstruction services and calibration suites to follow suit
 - Incorporate BAND, pending final specs
 - Implement upgraded CD neutral identification by CND group
 - requires EB/PID switch all to CTOF clusters
- Further Future
 - add timing to geometric matching
 - incorporate RICH
 - alternative/better identification schemes

