

CLAS12 Reconstruction Status

V.Ziegler

CLAS12 Collaboration meeting

November 12, 2019

Reconstruction Developments Overview

- Central Tracking (see Francesco's talk tomorrow)
 - Development of code with alignment functionality
 - Update on tracking algorithms
- Forward Tracking
 - New track fitting algorithm
 - Updates to Time-to-Distance function
 - Swimming updates
 - API updated for AI-assisted tracking capability
- DC Geometry & Alignment
 - DC alignment parameters used in tracking (spring and fall variations)
- ECAL Updates
 - PCAL projection yielding non-centered residuals resolved
 - Logarithmic weighting in cluster position validated
 - Validation of moments calculation done

- RICH
 - Reconstruction service included in the service chain
- CND
 - Updated cluster definition for trajectory compatibility
- ALERT
 - Reconstruction effort started
- RTPC (see David's talk)
 - Reconstruction algorithms in place
 - Reconstruction included in service chain
- EB Updates (see Nathan's talk)
 - Vertex-corrected start time
 - Delayed helicity correction improvement
 - Get charged tracks beta from non-TOF outer detectors if TOF info. unavailable
 - REC particle bank for FT update
 - Easier timestamp-based lookup for scalers/helicity

DC TRACKING: New Fitting Algorithm

MC docas at midplane

- Previous algorithm:
 - Get a position at midplane = wire + lr*doca_corr
 - Use position as measurement
 - Project state vector onto measurement (i.e. midplane) at site z = z of wire plane in TSC system.
 - Filter using delta(meas projected)
- New algorithm:
 - Get a signed doca: lr*doca
 - Lr \rightarrow floated parameter of doca_m < 5 mm
 - Use signed doca as measurement
 - Project state vector onto measurement at site z = z of wire plane in TSC system.
 - For now compute projector matrix numerically (del_h/del_a; a = state vector)
 - Filter using delta(meas projected) as before

DC TRACKING: Reconstruction Improvements

- Reinitialize the track from last Hit-Based state vector in KF → avoid frame transformation.
- Use of custom 5-d matrix used in KF: faster matrix operation compared to JAMA (matrix library used in development). [Implemented by Gagik in jnp package].
- More efficient track segment overlap finder.
- More efficient code to recompose clusters at Time-Based level using Hit-Based H.O.T.s.
- Al assisted tracking: potentially ~ 5x faster Hit-Based tracking (see my next talk).
- Outer detector matching using ECAL if no TOF hit matches (see Nathan's talk).

- Preliminary studies: yields about 8% more tracks in MC \rightarrow Testing with data ongoing.

DC TRACKING: New Fitting Algorithm

Vertex resolution improvement •

SIDIS MC events

- 0.1% better resolution in $\Delta p/p$ for outbenders •
- Vertex resolution as a function of θ

40

35

30

25

20

15

10

New Fitting

hi vz vs theta_pos

20

θ (deg)

15

10

-10

New Fitting Algorithm: Improvements in Fit Residuals

 Previous algorithm had fit bias in DC R-3 → pulling fit • New algorithm yields residuals consistent with cell size

DC TRACKING: New Algorithms

- Validation using data samples
- Comparison between production tag (6.3.1) and c-tag (6c.3.5) with new tracking code
- Elastic peak resolution improvement

Elastic events (2 nA data, Run 2391): sector 5

DC TRACKING: New Algorithms

• Elastic peak resolution improvement

Elastic events (6.5 nA data, Run 5990): sector 5

DC TRACKING: New Algorithms

Ongoing Developments

- Validation of DC wire endpoints displacement due to end plates bowing.
 - Implemented in geometry package
 - Currently debugging...

 Modifies midpoint, endpoints of wire → returns in TSC system to Reconstruction

- Testing Time dependent beta correction in Time- to-Distance function
 - Based on CLAS-Note 96-008

$$T_{corr} = TDC - Tflight - Tprop - T0 - TStart$$

$$T_{corr} = \begin{bmatrix} c^3 & T \\ c^3 + T \end{bmatrix} = \begin{bmatrix} a^3 & T \\ b^2 \end{bmatrix} = \begin{bmatrix} c^3 & T \\ c^3 + T \end{bmatrix} = \begin{bmatrix} a^3 & T \\ c^3 +$$

 $\circ T_{\beta} = [c^3 \cdot T_{corr} / 2 \cdot (c^3 + T_{corr}^3)] \cdot \beta^2$

Ongoing Developments: New swimmer package

- Testing new adaptive swimmer package (Dave Heddle)
 - Faster (about 1.5 times faster).
 - Old swimmer:
 - standard 4th order Runge-Kutta (with a 5th order correction) stepper with a (boring) half- step adapter.
 - New swimmer: Butcher Tableau stepper.
- Modified Swim-tools (V. Ziegler)
 - Simple cut to handle loopers (tracks that will not reach a surface) in stopper.
 - Modified for cylindrical surfaces.
- Ongoing development of Trajectories for Central to be used by the Event Builder.

PCAL Parallax Correction

Z Tracking Planes in PCAL

- PCAL and EC reconstruction measures only transverse (x,y) cluster position.
- Cluster z position referenced to user-defined Z tracking plane.
- PCAL Z tracking plane must approximately coincide with depth of shower maximum to avoid parallax errors in theta for off-normal straight tracks (photons,neutrons).
- For EC the scintillator projective geometry compensates for parallax.

Implemented in 6c.3.4

- ECCommon.java
- TrajectorySurfaces.java
- DetectorLayer.java
 - Introduce DetectorLayer.PCAL, EC_INNER, EC_OUTER
 - Set DetectorLayer.PCAL_Z = 9
- ECFactory.java
 - Generate scintillator volumes for all ECAL layers

Expected Impact

- PCAL-EC cluster matching
- Pathlength for timing calibration
- Neutral meson 4-vector from 2Y decay kinematics
- DC tracking residuals for cluster PID and alignment

Cole Smith (UVA)

PID: CND/CTOF Veto

Adam Hobart (Orsay)

Current Status & Summary

- Validation of new Central Tracking ongoing
- Validation of DC Tracking Efficiency ongoing
- New DC tracking improvements impact on missing masses (physics), matching for PID, alignment
 - -Fine tuning in timing calibration
 - -DC re-calibration ongoing
- DC Tracking modified to work with Neural-Network-predicted Hits-On-Track. (Done)
- Improvements in matching algorithms
 - -EB impact on efficiency
 - -ECAL parallax correction & better tracking \rightarrow improvements in tracking resolution (cluster position) \rightarrow pathlenth, opening angle for gammas, π^0 invariant mass
- PID: CND/CTOF veto
- Next: validation of c-tag using luminosity scan, physics reaction

BACK-UP SLIDES

DC TRACKING: Time To Distance Calculation

