Status of Run Group F

- BONuS12

- DVCS on Neutron

Eric Christy

CLAS Collaboration Meeting

November 13, 2019

Neutron Structure from Spectator Tagging in the "Barely Off-Shell Neutron Structure" (BONuS) Experiment

$$p_{S} = (E_{S}, \vec{p}_{S}); \alpha_{S} = \frac{E_{S} - \vec{p}_{S} \cdot \hat{q}}{M_{D}/2}$$

PWIA Spectator Model:

- → Slow Backward proton is spectator
- → Neutron is *slightly* offshell
- → measured proton momentum from recoil in weakly bound d

=> correct for initial state neutron momentum

 $W *^{2}(p_{n} + q)^{2} = p_{n} p_{n} + 2((M_{D} - E_{s})v - \vec{p}_{n} \cdot \vec{q}) - Q^{2}$ $M *^{2} + 2 M v (2 - \alpha_{s}) - Q^{2}$ 250 200 yield [arbitrary units] 150 $W^2 = M^2 + 2M_V - Q^2$ 100 • d(e,e'p)X 50 d(e,e')X 0.8 2.2 1.2 1.8 2 2.4W* or W [GeV]

Oct 13, 2019

M.E. Christy

CLAS Collaboration

Select slow, backward protons to minimize:

1. Off-shell effects

2. Final state interactions

3. Enhancement to proton yield from target fragmentation

Oct 13, 2019

M.E. Christy CLAS Collaboration

Tag spectator proton in RTPC

Lots of interesting results from 6 GeV

Expected BONuS12 precision

Oct 13, 2019

M.E. Christy

CLAS Collaboration

Multiple experiments in JLab 12 GeV era to determine *d/u* at high-*x*

With *different* systematics

- MARATHON 3H / 3He mirror nuclei
- SoLID PVDIS
- BONuS12 proton recoil tagging

Oct 13, 2019

M.E. Christy

BONuS12 Experimental Setup

$e^{-}D \rightarrow e^{-}pX$

11 GeV

- Planned experimental setup: - CLAS12 Forward Detector:

- → Superconducting Torus magnet.
- \rightarrow 6 independent sectors:
 - \rightarrow HTCC
 - \rightarrow 3 regions of DCs
 - → LTCC /RICH
 - → FTOF Counters
 - \rightarrow PCAL and ECs
 - \rightarrow FT off

- Central:

- → Target: D gas @ 7 atm, 293 K
- → BONuS12 RTPC
- \rightarrow FMT
- \rightarrow Solenoid (5 T)
- \rightarrow CTOF, and CND

35 days on D 5 days on ${}^{4}\text{He/H}_{2}$ with L = 2 \cdot 10 34 cm⁻² sec⁻¹

BONuS RTPC General Specifications

Deuterium

target @7 atm

ground foil

- \rightarrow Active length: 40 cm
- \rightarrow Radial drift distance: 4 cm
- \rightarrow Drift gas He/CO₂ (80/20)
- $\rightarrow 3$ GEM amplification layers
- $\rightarrow 16 \, \mathrm{HV} \, \mathrm{sectors} \, \mathrm{per} \, \mathrm{GEM}$ (Segmented in ϕ)
- \rightarrow Pad readout: 2.8 mm x 4 mm => 17,280 channels

3 mm dead zone

He (80%) - CO₂(20%)

@1 atm

Readout pads 18000

> Ox(mm) 80 mm

Oct 13, 2019

M.E. Christy

Beam

CLAS Collaboration

e' to CLAS

RTPC Construction at HU

Ibrahim Albayrak Aruni Nadeeshani

Oct 13, 2019

M.E. Christy CLAS Collaboration

Field cage + chamfer + high voltage board

GEM Wrapping and Testing

Oct 13, 2019

M.E. Christy

GEM Installation

Padboard

(Fast Electronics Group)

Outside Surface After forming cylinder

Connectors

14

Oct 13, 2019

Inside Surface

M.E. Christy

Padboard Wrapping

Pad board on wrapping station during gluing process

Pad board alignment cards for the rings

Final testing:

< 0.5% bad pad connections

Oct 13, 2019

M.E. Christy

CLAS Collaboration

Cathode / ground assembly tension transfer test

Oct 13, 2019

M.E. Christy

CLAS Collaboration

Cathode / Ground Assembly

Oct 13, 2019

M.E. Christy

CLAS Collaboration

Completed Detector

Oct 13, 2019

M.E. Christy

CLAS Collaboration

Detector / Testing Status

- 1^{st} detector completed and tested with HV on cathode (-3000V) and both ground foil and padboard grounded and 1^{st} GEM layer at -200 V
 - => current draw consistent with resistance through field cages

- Biasing of all GEM layers tested individually after forming cylinders
- Detector being transported to EEL for testing today.
- Waiting for SHV \rightarrow LEMO HV cables (non-standard cable) to fully power all GEMs

Oct 13, 2019

M.E. Christy CLAS Collaboration

Current limiting adapter boards

Oct 13, 2019

M.E. Christy CLAS Collaboration

BONuS12 Drift-Gas Panel and Slow Controls

Target

Buffer

Drift

- Gas system for drift and target regions in EEL, as part of test bench.
- Controllers and sensors for drift gas region run by slow controls.
- Drift gas region quantities have assigned EPICS variables and can be archived.
- Operation manual exists for this system as a live document.

Oct 13, 2019

M.E. Christy

CLAS Collaboration

BONuS12 Drift-Gas Panel and Slow Controls

Gui operating in EEL test setup

Oct 13, 2019

M.E. Christy

Drift-gas Monitoring System (DMS)

Provides constant monitoring of changes in drift velocity due to changes in: Temperature, pressure, gas mixture

 \rightarrow DMS built, tested, and shown to provide good precision for monitoring changes in gas affecting drift velocity.

Nathan Dzbenski, ODU

 \rightarrow Soon to be installed on Gas panel in EEL126

23

Oct 13, 2019

Test setup in EEL

Setup in EEL126 to test:

- detector
- gas system
- full readout electronics chain
- DAQ
- Slow controls and monitoring

Oct 13, 2019

M.E. Christy CLAS Collaboration

Test setup in EEL

Jiwan Poudel, ODU Mohammad Hattaway, ODU

- → FEU firmware has been updated for and tested for RTPC operation.
- → Signals from cosmics readout utilizing EG6 prototype RTPC
- → Everything in place for full CODA readout
- → Estimated time for full decoder and analysis software for cosmic ray tracking ~1.5 – 2 weeks.

Oct 13, 2019

M.E. Christy

Status of Gas Target

- Received improved aluminized Kapton straws two weeks ago
 - 63 μm wall thickness
 - No gap between winding turns
 - Symmetric overlap of turns
- Presently testing in the lab
 - Long-term pressure stability and leak rate for nitrogen and helium gas
 - Pressure stable at 100 psi for 10 days
 - leak rate of about 1 psi of helium per hour at 95 psi pressure
 - Burst pressure at 120 psi

Oct 13, 2019

M.E. Christy CLAS Collaboration

CLAS integration

- \rightarrow CVT replaced with RTPC and barrel support for FMT and cables
- → Utilize new 3 layer FMT
- \rightarrow Utilize existing CVT electronics and cables for RTPC
- → Utilize existing CVT HV box for RTPC

27

Oct 13, 2019

M.E. Christy

Track Reconstruction (CLAS12 COATJAVA)

David Payette (ODU)

Software developed to data from Digitized signal in DREAM format:

- \rightarrow ADC for each pad in 120 ns time slices over entire time window (10000 ns).
- \rightarrow sort the signals on the readout pads into tracks
- \rightarrow reconstruct the position of the ionization electrons which caused the signals
- \rightarrow fit the tracks to calculate the momentum based on the curvature

Oct 13, 2019

M.E. Christy

CLAS Collaboration

Reconstruction Resolutions: Monte Carlo

Analysis of MC data including with simulated signals and entire reconstruction chain.

→ Resolutions on reconstructed

$$z_{vert}$$
, θ , P_{protor}

already meet experiment requirements.

.

hRecvsGenRec

Oct 13, 2019

200

180

160

140

120

100

80

60

40

20

0

20

40

60

80

Momentum (rec)

M.E. Christy

100 120 140 160 180 200

Momentum (reconstructed lund)

Entries

Mean x

Mean y

Std Dev x

Std Dev y

2867

78.18

CLAS Collaboration

Beam Requirements

Parameter	Requirement	Comments
Energy (GeV)	10.6(2.2)	A short run with 2.2 GeV, 1-pass beam
		at the beginning is needed for RTPC calibration
$\delta \mathrm{p}/\mathrm{p}$	$\sim 10^{-4}$	
Current (nA)	200 - 400	The production running will be at ~ 200 nA,
		with up to 400 nA for empty target runs
Current stability	< 5 %	for > 30 nA
$\sigma_{xy} \ (\mu m)$	< 300	As measured by 2H01A harp
Position stability (μm)	< 100	On 2H01 and 2H00 $(> 30nA)$
		BPMs with feedback
Divergence (μrad)	< 100	
Beam Halo $(>\pm 5\sigma)$	$< 10^{-5}$	As measured by 2H01A harp
Charge asymmetry	< 0.1%	Measured with SLM and halo
		rates, and controlled by hall
60Hz harmonics	< 10%	of the total power, measured
		with SLM and halo rates

Oct 13, 2019

M.E. Christy CLAS Collaboration

Schedule

11/15: First RTPC operational in EEL; begin of tests of all systems

12/1: Full tracking tests, DAQ and analysis operational.

12/15: 2nd RTPC completed, as well as target assembly and all installation hardware.

January: Routine operation in EEL with RTPC for experiment

January 30: Begin disassembly of RG-B, move of CVT into EEL

1/31-2/8: Radiation (neutron) test in Hall B; simultaneously deinstallation of BMT and SVT, and installation of RTPC and new FMT on insertion cart. If time, cosmic test with full electronics complement.

2/8-2/10: Installation of RTPC in Hall B.

2/12: Begin commissioning of RTPC at 1 pass (2.2 GeV)

2/16: Begin production running for BONuS12/RGF.

Oct 13, 2019

M.E. Christy

CLAS Collaboration

Thanks!

Oct 13, 2019

M.E. Christy CLAS Collaboration

Oct 13, 2019

M.E. Christy

CLAS Collaboration

BONuS12) was approved as a "high impact" experiment utilizing the upgraded CLAS12 spectrometer.

Additional approved experiment to measure DVCS on neutron will require High polarization and Moller runs about once per week.

- \rightarrow Improved gain uniformity
 - **Better momentum resolution**
- \rightarrow Increased drift region 3cm \rightarrow 4cm
 - **Better track sampling**
- \rightarrow Improve ϕ acceptance
- → Doubled detector length and improve front end
- Electronics => increase luminosity to 2x10³⁴cm⁻²s⁻¹

Oct 13, 2019

M.E. Christy

Charge Amplification using Gas Electron Multipliers (GEMs)

- \rightarrow Holes chemically etched in kapton layered front and back with copper.
- \rightarrow Gas amplification due to large local field in holes.
- \rightarrow More amplification from more GEM layers.
- \rightarrow Can operate at very high rates.
- \rightarrow Can conform to curved geometries

F. Sauli et al., NIMA 386 (1997) 531

35

Oct 13, 2019

M.E. Christy

- \rightarrow Integral I_{vip} is largely independent of W* (x*) and Q²
- → Determined from R_{exp} at x=0.3, where nuclear effects are small using F_2^{n} / F_2^{d} from CJ PDF fit.

Then $F_2^n / F_2^d = R_{exp}^* I_{vip}$ M.E. Christy CLAS Collaboration

36

Oct 13, 2019