

FOCUS ON WORK SINCE JUNE 2019 CLAS MEETING

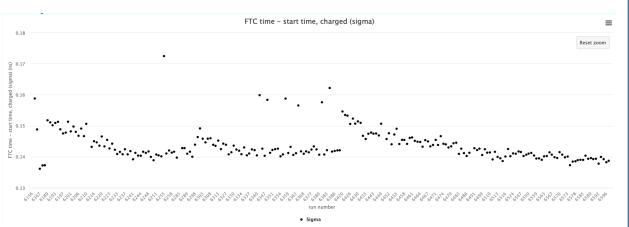
CLAS12 Run Periods

Run Group A

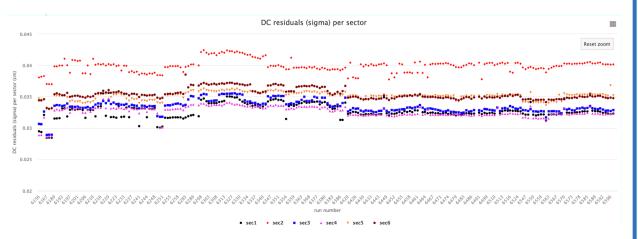
Feb. - May 2018
 Sep. - Nov. 2018
 Mar. - Apr. 2019

- 2.2, 6.4, 10.2, 10.6 GeV
- Torus +/- polarity; different settings
- FMT in/out
- LTCC 2/4 boxes (different gas levels)
- Different Central Detector geom.
- Different DC efficiencies (gas gain)

- FT on/off
- Different luminosities/backgrounds
- LTCC 2 boxes (different gas levels)


- 10.2, 10.6 GeV
- LTCC 2 boxes
- LD₂ target different backgrounds

CLAS12 Reference Calibration Runs

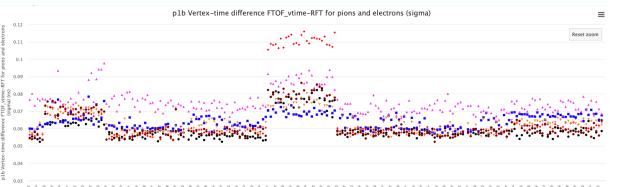

#	Run	Run Group	Torus	Sol	≺i> (nA)	E _b (GeV)	Tag	Date
1	3222	A (Spr 18)	+100%	-100%	25	10.6	5.7.4	2/15/18
2	3355	A (Spr 18)	-100%	-100%	35	10.6	5.7.4	2/20/18
3	4013	A (Spr 18)	-100%	-100%	50	10.6	5b.7.1	12/21/18
4	5038	A (Fall 18)	-100%	-100%	45	10.6	6b.3.0	7/30/19
5	5197	A (Fall 18)	-100%	-100%	45	10.6	6b.3.0	7/30/19
6	5424	A (Fall 18)	+100%	-100%	40	10.6	6.3.1	8/22/19
7	5700	K (Win 18)	+100%	-100%	30	7.5	6b.3.0	7/30/19
8	5893	K (Win 18)	+100%	-100%	60	6.5	6b.3.0	7/30/19
9	6164	B (Spr 19)	-100%	-100%	35	10.6	6.3.1	8/17/19
10	6233	B (Spr 19)	-100%	-100%	35	10.6	6.3.1	8/17/19
11	6489	B (Spr 19)	-100%	-100%	50	10.6	6.3.1	8/17/19
12	6715	A (Spr 19)	-100%	-100%	50	10.2	6.3.1	8/22/19

Pass-O Monitoring

FT-Cal Time Resolution (ns)

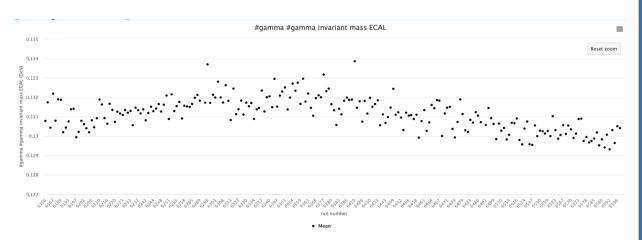
DC Residuals (cm)

https://clas12mon.jlab.org/rgb/pass0/v15/tlsummary/


D.S. Carman, CLAS Collaboration Meeting - Nov. 2019

*See Andrey Kim's talk

subsystem	variables	link
RF	 n^{+/-} vertext time - RFtime1 per sector, FD n^{+/-} vertext time - RFtime1 CD Electron vertext time - RFtime1 per sector, FD Electron vertext time - RFtime1 per sector, FD Proton vertext time - RFtime1 per sector, FD Proton vertext time - RFtime1 per sector, FD Proton vertext time - RFtime1 per sector, FD Average RFtime difference 	timelines
TRIGGER	 Electrons/Protons per trigger per sector Positives/Negatives/Neutrals per trigger per sector Muons per trigger per sector n^{+/-} per trigger per sector K^{+/-} per trigger per sector 	timelines
LTCC	LTCC Number of Photoelectrons	timelines
нтсс	 Average Number of Photoelectrons per sector HTCC Number of Photoelectrons 	timelines
FT	 FTH MIPS time, neutral FTH MIPS energy per layer (Mean) FTC time - start time, neutrals/charged FTC pi0 mass 	<u>timelines</u>
FORWARD	 VZ (peak value) per sector, positives/negatives/electrons Average Forward Reconstruction chi2, positives/negatives/electrons 	<u>timelines</u>
EC	 n^{+/-} time M_{YY} sampling fraction 	timelines
DC	 t max per sector per superlayer t0 per sector per superlayer DC resuduals (peak value) per sector per superlayer DC residuals (peak value) per sector 	<u>timelines</u>
CVT	Average vz. positives/negatives CVT Track Multiplicity CVT positive/negative track multiplicity CVT positive/negative track multiplicity per trigger CVT ndf CVT roh2/ndf CVT transverse momentum CVT transverse momentum CVT transverse momentum Average CVT chl2, positives/negatives/dectrons	timelines
FTOF	 Path-length Corrected Edep for negative tracks, p1a/p1b/p2 Vertex-time difference FTOF_vtime-RFT for pions and electrons (mean/sigma), p1a/p1b/p2 	timelines
CTOF	 Path-length corrected edep for negative tracks Vertex-time difference CTOF_vtime-STT for negative tracks (mean/sigma) 	timelines
PARTICLE_MASS_CTOF_AND_FTOF	 FTOF mass² at p1a/p1b for n^{-/+}/proton (mean/sigma) CTOF mass² for n^{-/+} (mean/sigma) 	timelines
CND	 CVT z - CND z per layer CND time per layer MIPS dE/dz 	<u>timelines</u>
CENTRAL	 Protons per trigger n^{+/-} per trigger K^{+/-} per trigger 	<u>timelines</u>
BMTBST	BST/BMT layers per track BST/BMT Occupancy	timelines
BAND	 sector combination from adc, fadc, and tdc 	timelines


Pass-O Monitoring

FTOF Time Resolution (ns)

• Sigma,1 • Sigma,2 = Sigma,3 • Sigma,4 • Sigma,5 • Sigma,6

ECAL π^0 mean (GeV)

https://clas12mon.jlab.org/rgb/pass0/v15/tlsummary/

subsystem	variables	link
RF	 n^{+/-} vertext time - RFtime1 per sector, FD n^{+/-} vertext time - RFtime1 CD Electron vertext time - RFtime1 per sector, FD Electron vertext time - RFtime1 per sector, FD Proton vertext time - RFtime1 cD Average RFtime difference 	timelines
TRIGGER	 Electrons/Protons per trigger per sector Positives/Negatives/Neutrals per trigger per sector Muons per trigger per sector n^{4/} per trigger per sector k^{+/-} per trigger per sector 	timelines
LTCC	LTCC Number of Photoelectrons	timelines
нтсс	Average Number of Photoelectrons per sector HTCC Number of Photoelectrons	timelines
FT	 FTH MIPS time, neutral FTH MIPS energy per layer (Mean) FTC time - start time, neutrals/charged FTC pi0 mass 	<u>timelines</u>
FORWARD	 VZ (peak value) per sector, positives/negatives/electrons Average Forward Reconstruction chi2, positives/negatives/electrons 	timelines
EC	• $n^{+/-}$ time • $M_{\gamma\gamma}$ • sampling fraction	timelines
DC	 t max per sector per superlayer t0 per sector per superlayer DC resuduals (peak value) per sector per superlayer DC residuals (peak value) per sector 	timelines
CVT	Average vz, positives/negatives CVT rostitve/negative track multiplicity CVT positive/negative track multiplicity per trigger CVT ndf CVT ndf CVT chi2/ndf CVT transverse momentum CVT transverse momentum CVT transverse momentum CVT transverse momentum Average CVT chi2, positives/negatives/lectrons	timelines
FTOF	 Path-length Corrected Edep for negative tracks, pla/plb/p2 Vertex-time difference FTOF_vtime-RFT for pions and electrons (mean/sigma), pla/plb/p2 	timelines
CTOF	 Path-length corrected edep for negative tracks Vertex-time difference CTOF_vtime-STT for negative tracks (mean/sigma) 	timelines
PARTICLE_MASS_CTOF_AND_FTOF	 FTOF mass² at pla/plb for n^{-/+}/proton (mean/sigma) CTOF mass² for n^{-/+} (mean/sigma) 	timelines
CND	 CVT z - CND z per layer CND time per layer MIPS dE/dz 	timelines
CENTRAL	 Protons per trigger n^{+/-} per trigger K^{+/-} per trigger 	<u>timelines</u>
BMTBST	 BST/BMT layers per track BST/BMT Occupancy 	timelines
BAND	 sector combination from adc, fadc, and tdc 	timelines

Reconstruction Improvements

Reconstruction Code Updates Relevant for Calibrations*:

- DC: improved swimming algorithm (next release)
 - fix wire sag/endplate distortions (in progress)
 - new $t \rightarrow d$ functional (polynomial)
 - improve modeling of DOCA uncertainty vs. d

CVT: - working to produce new code with alignment functionality (in progress)

- □ FT: improve TW functional for FT-Cal timing
- □ EB: implement vz correction to ST

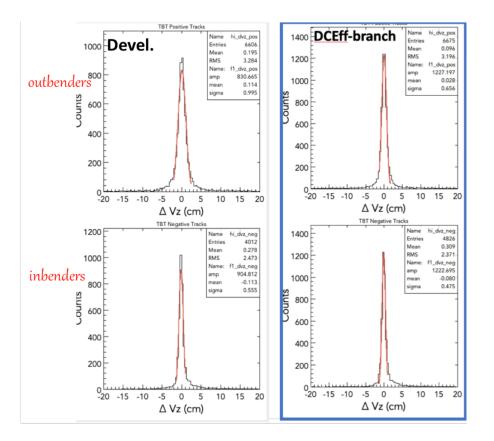
*Updates since 6/19 CLAS meeting Note: recent reconstruction changes relevant for calibrations have been relatively modest:

 Focus on "frozen" version of code for DNP preparations

*See Nathan Baltzell's talk

• Calibration procedures changing from development \rightarrow production phase

D.S. Carman, CLAS Collaboration Meeting - Nov. 2019


*See Veronique Ziegler's talk

*See Francesco Bossu's talk

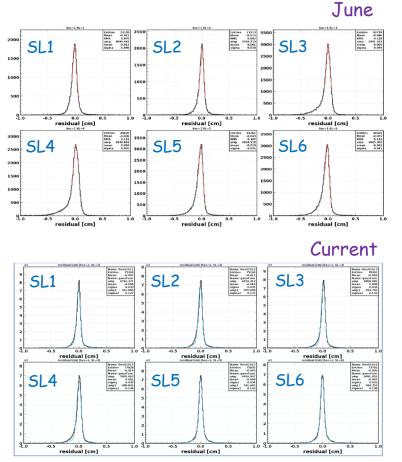
6

Forward Tracking Improvements

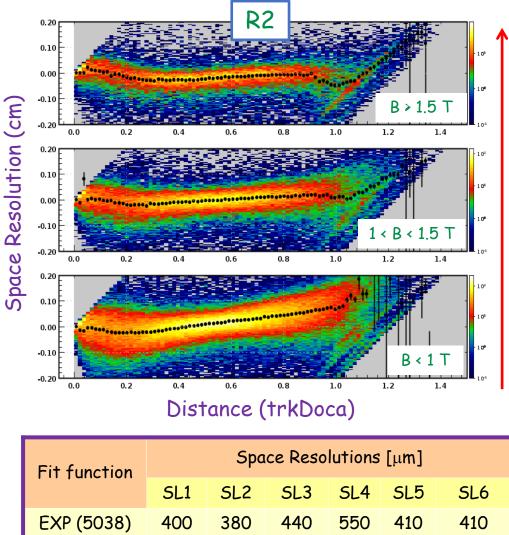
Vertex Resolution Improvement

Improvement in vertex resolution leads to improved FTOF time resolution due to vertex correction

 \Rightarrow improved PID


New tracking implementation currently in development branch being validated for next release

SIDIS MC


DC Calibration Status

New time-to-distance functional implemented for calibration

Run 5038 - 51

Still working on B-field dependence

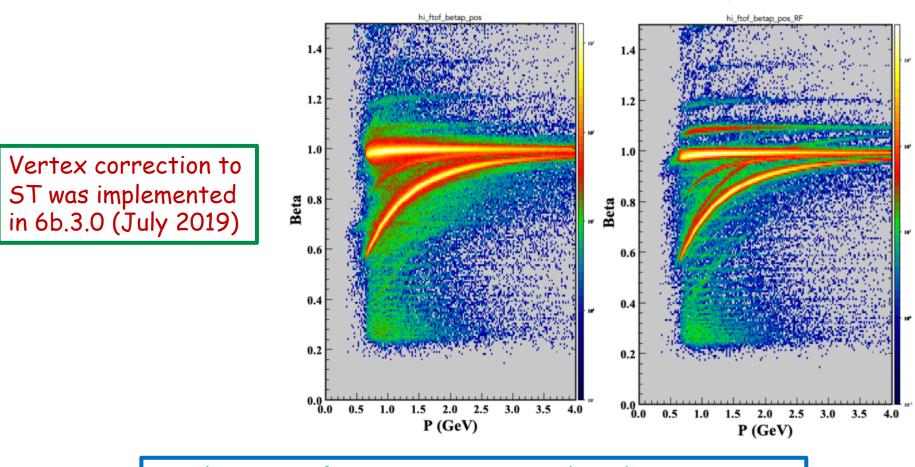
D.S. Carman, CLAS Collaboration Meeting - Nov. 2019

POLY (5038)

330

350

340

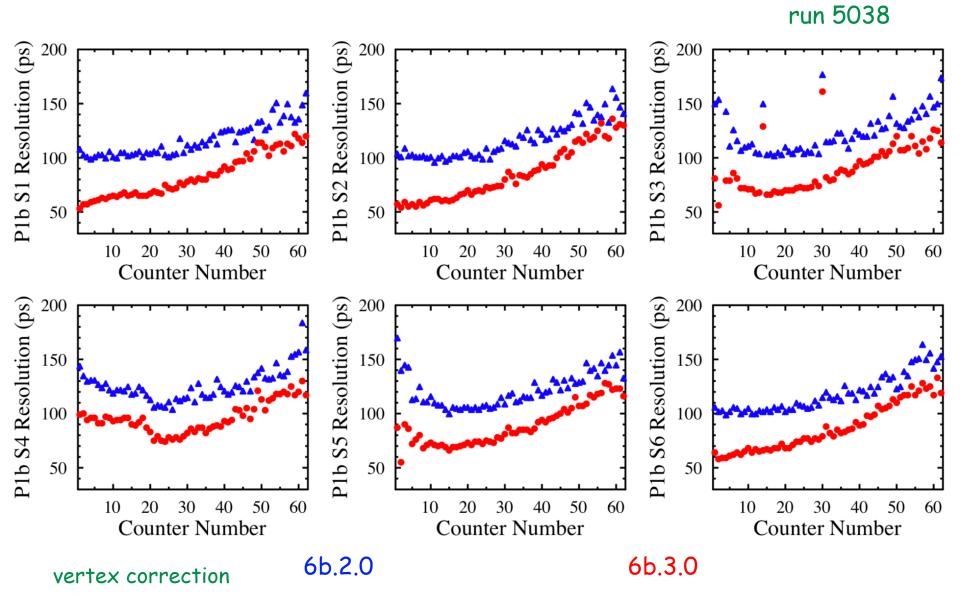

330

340

390

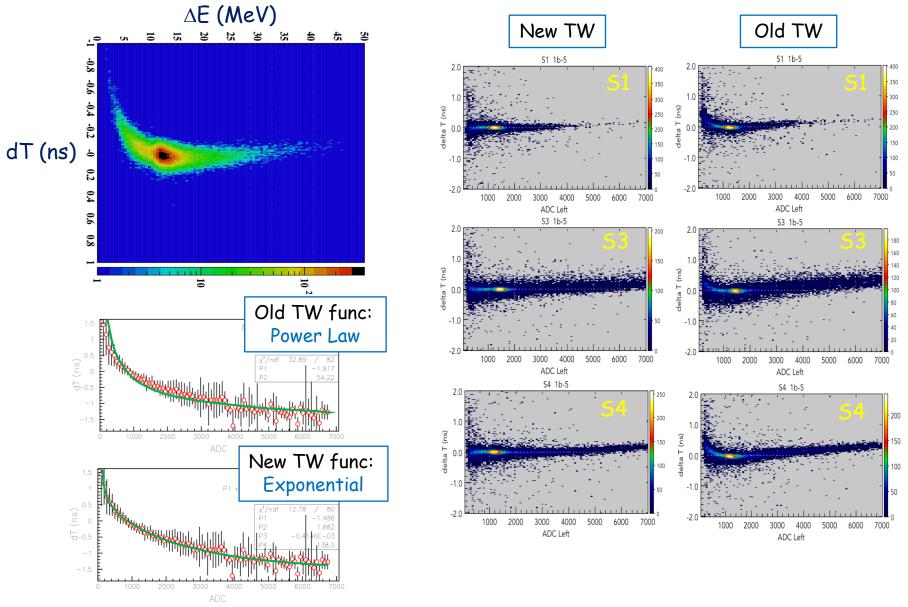
FTOF PID Status

no correction

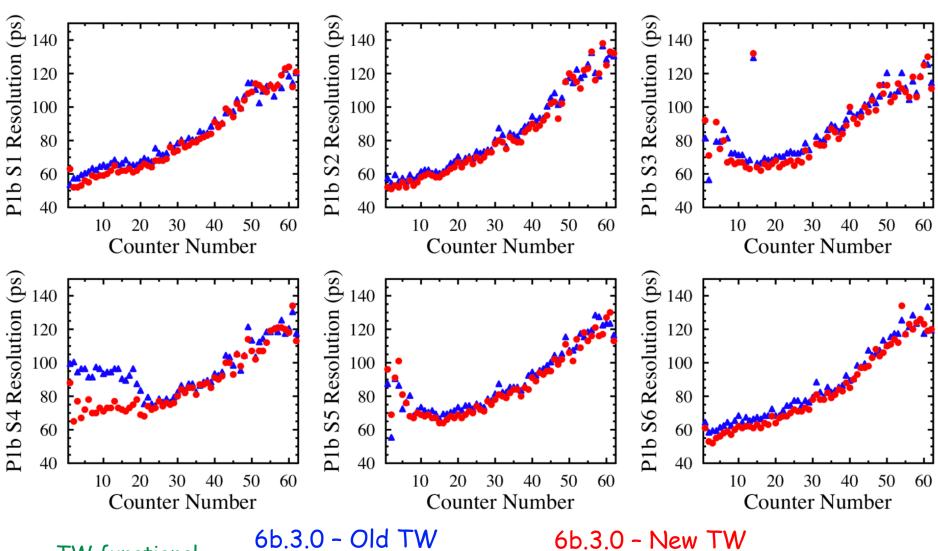


Recalibration of CLAS12 timing based on this correction has taken place for recent RG-A/K/B cooking

D.S. Carman, CLAS Collaboration Meeting - Nov. 2019


with correction

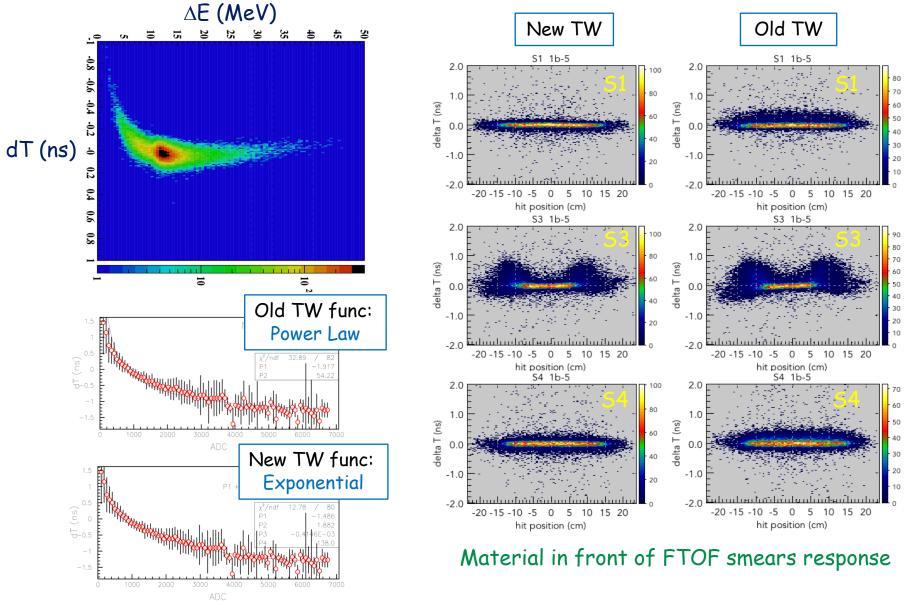
FTOF Calibration Status


D.S. Carman, CLAS Collaboration Meeting - Nov. 2019

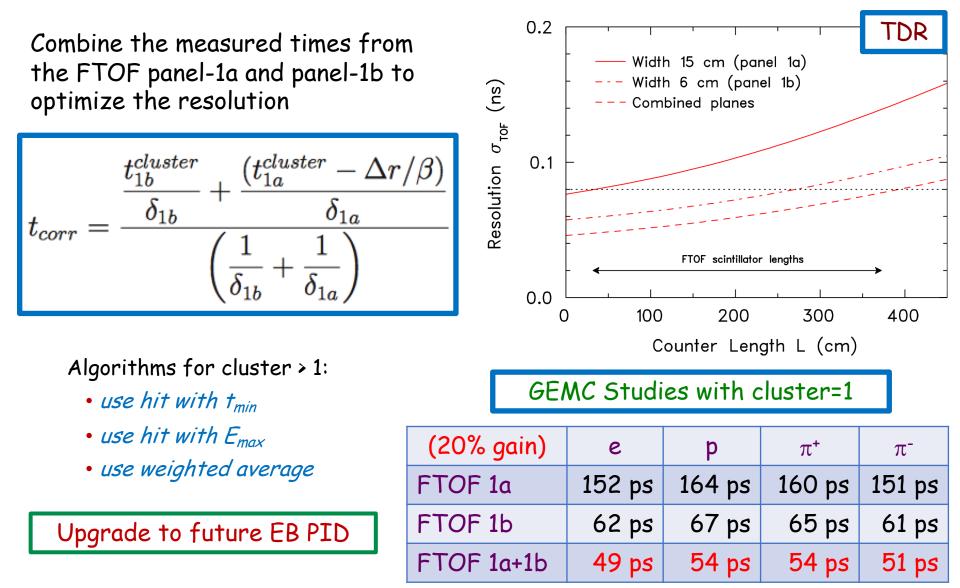
FTOF Calibration Improvements

D.S. Carman, CLAS Collaboration Meeting - Nov. 2019

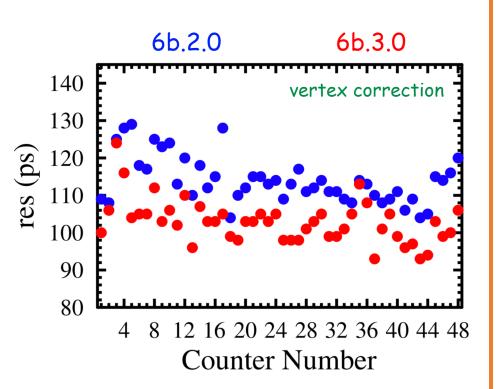
FTOF Calibration Status

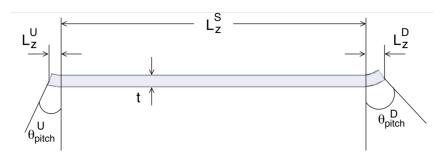


TW functional


D.S. Carman, CLAS Collaboration Meeting - Nov. 2019

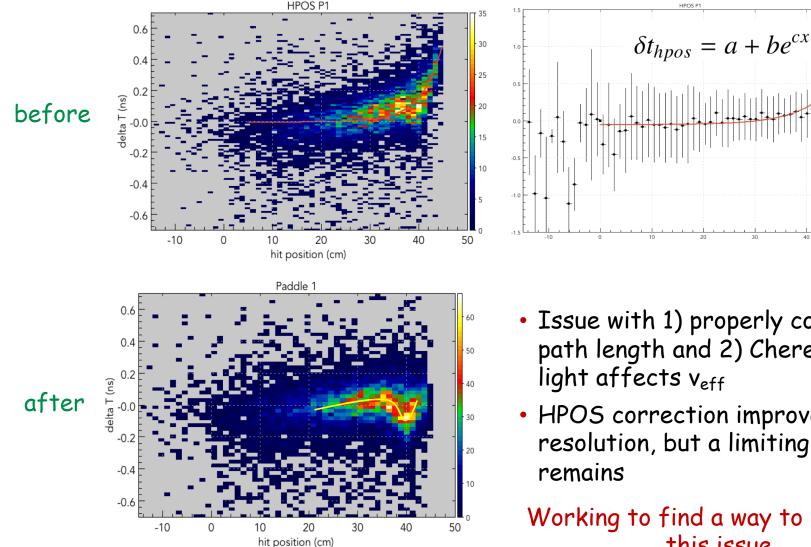
run 5038


FTOF Calibration Improvements


Optimizing FTOF Time Resolution

CTOF Calibration Status

Worsening resolution for N < 16 connected with CVT/Central Detector misalignment? The timing resolution goal is 80 ps



CTOF scintillation bar

We are still battling with the curved ends of the bar

most of the tracks are incident on the downstream curved portion

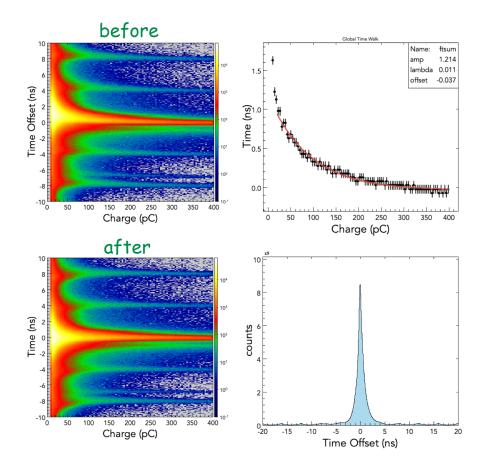
CTOF Calibration Status

- Issue with 1) properly computing path length and 2) Cherenkov light affects v_{eff}
- HPOS correction improves timing resolution, but a limiting remnant

Working to find a way to eliminate this issue

D.S. Carman, CLAS Collaboration Meeting - Nov. 2019

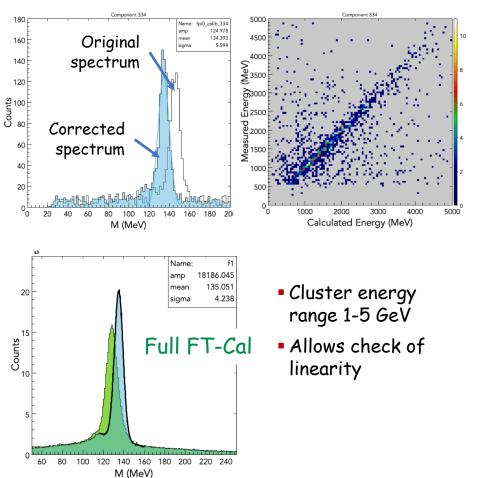
FT Calibration Status


FTHodo:

- Energy and timing calibration completed
- Timelines show very good stability

FTCal:

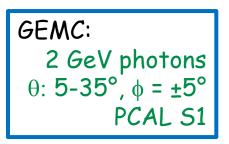
- Timing (TW and offsets) calibrations done
- Timelines show small but progressive drop of light yield due to radiation damage; recoverable with warmup at room temp
- Still to-do:
 - Redo leakage correction accounting for actual channel thresholds


Example of time walk calibration

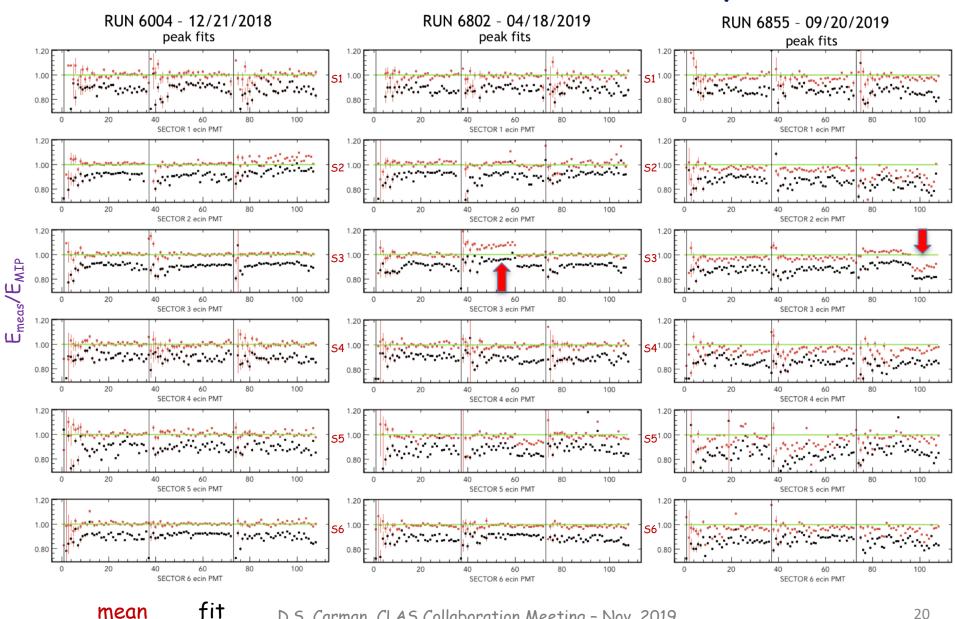
FT Calibration Status

FT-Cal energy calibration based on $\pi^{\rm 0}$ mass:

- Use events with two neutral clusters in FT-Cal
- For each crystal, select the events in which the crystal is the seed of one of the clusters
- For the same events, calculate the ratio between the measured cluster energy for the given crystal and the energy calculated from the nominal π^0 mass and the other cluster energy
- Fill histogram with this correction factor and fit it
- Use this correction factor to recalculate the cluster energies
- Apply procedure iteratively, until the factors are less than 1%

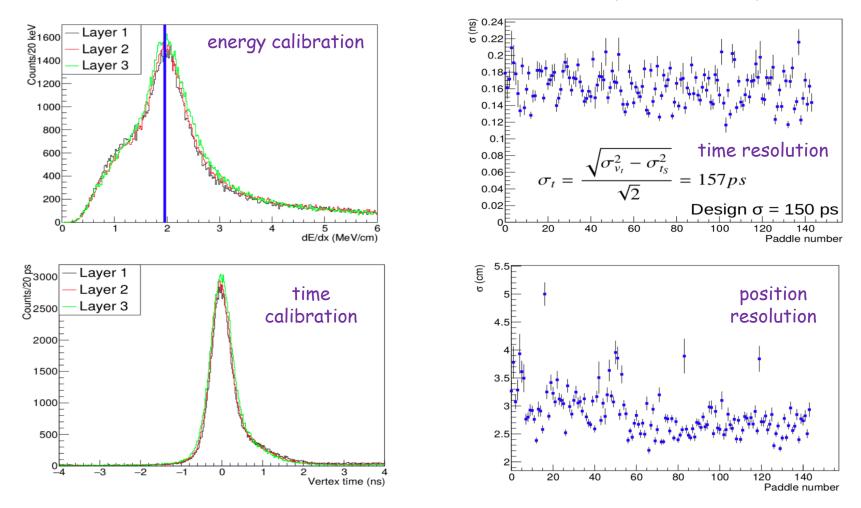

Single crystal

D.S. Carman, CLAS Collaboration Meeting - Nov. 2019


ECAL Cluster Reconstruction

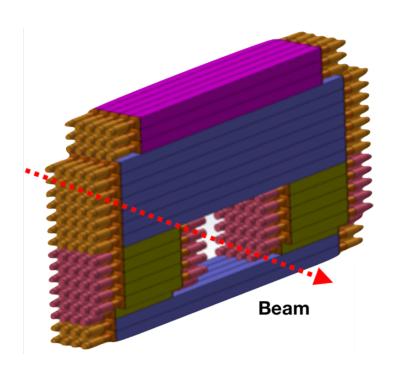
- Off-normal straight tracks introduce a parallax shift using the nominal cluster z reporting plane - results in position dependent error in cluster angle
- Empirically shifting the reporting plane deeper into stack removes the effect
- This fix will be in the next reconstruction release

ECAL Calibration Stability


D.S. Carman, CLAS Collaboration Meeting - Nov. 2019

mean

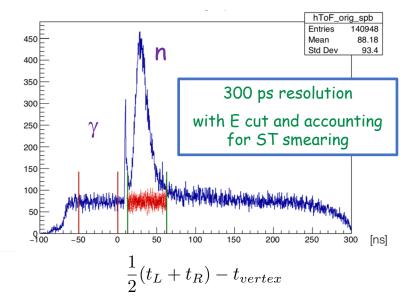
MIP Study


CND Calibration Status

Calibration code stable since June - calibration stability under study for RG-B

Focus now on developing effective charged particle veto

BAND Calibration Status

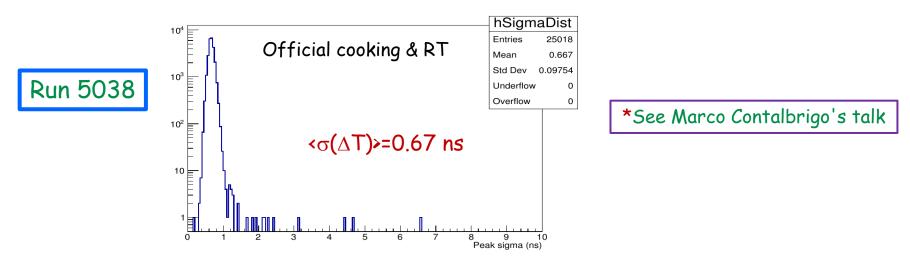


BAND was installed for use in RG-B

Also to be used in RG-F/BONUS12 experiment

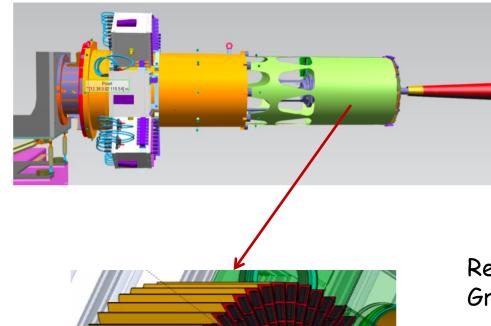
*See Efrain Segarra's talk

	Type of data used	Type of file used for analysis	Coding Language	Product usable by calibrator
HV-Gain response	Cosmic (stand-alone)	Decoder output	C++	50 > 100 %
ADC to MeV	Source (stand-alone)	Decoder output	C++	0 -> 50 %
PMT time-walk	Scanned laser (stand-alone)	Decoder output	C++	100 %
L-R offsets, effective velocity,	Cosmic (stand-alone)	Decoder output	C++	100 %
Global alignment	Laser (stand- alone), Production data	Decoder output Cooked output	C++	100 %
Monitoring	Prod.	Decoder output	C++	25 > 75 %



D.S. Carman, CLAS Collaboration Meeting - Nov. 2019

RICH Calibration Status


RICH reconstruction software integrated into official CLAS12 software in July

- Time calibration: now using hipo4 files
- Time calibrations very good; systematics of stability studied
 - $_{\circ}\,$ Time walk parameters are quite stable \rightarrow once per run period
 - $_{\circ}\,$ Time offset parameters are also stable \rightarrow few times per run period, often is just an overall constant
- Revision of the time calibration suite to use the farm
 - Much faster results

D.S. Carman, CLAS Collaboration Meeting - Nov. 2019

BONUS12 Calibration Status

Run Group F: Feb. 12 – May 6, 2020

*See David Payette's talk

Recent discussion within CALCOM Group:

- Overview presentation given on Sep. 27, 2019 (Mohammad)
- Work on calibration software getting underway

https://clasweb.jlab.org/wiki/images/0/07/CALCOM_BONuS12_Sep27_2019.pdf

Remaining Calibration Work

✤ DC:

- Finalize studies with new t \rightarrow d function
- Continue systematic studies of calibration response
- ✤ ECAL:
 - Complete studies of long-baseline calibration drifts
 - Develop PMT gain corrections to account for loss with time
 - Develop new timing calibration scheme and implement into calibrations
 - Understand systematics in timing vs. PID, path length, geom

FTOF:

- Finalize functional for TW correction
- Understand systematics in MIP peak position (e.g. vs. torus polarity)
- ✤ CTOF:
 - Finalize HPOS correction
 - Fix counter hit point definition

Remaining Calibration Work

+ FT:

- CAL: Refine energy leakage correction over full ΔE range
- TRK: Reconstruction code development

✤ CND:

- Complete neutron detection efficiency studies
- Finalize charged particle veto scheme
- ✤ BAND:
 - Complete neutron detection efficiency studies
- ✤ RICH:
 - Complete development of PID scheme and implement in Event Builder
 - Complete alignment work
- * LTCC:
 - No timing calibration need code development

*See Nick Markov's talk

- ✤ BONUS12:
 - Development of calibration algorithms/documentation/tools

Performance Status

System	Spec	Achieved	Spec	Achieved
BAND	<eff<sub>n> = 35%</eff<sub>	TBD	δ t < 300 ps	300 ps
CND	<eff<sub>n> = 10%</eff<sub>	9%	δ † = 150 ps	157 ps
CTOF	δ t = 80 ps	100 ps		
DC	δ x = 250 - 400 μ m	300 - 400 μm		
ECAL	σ _E /E = 10%/√E	10%/√E	δ t < 500 ps	< 600 ps
FT	σ _E /E < 2%/√E + 1%	3.3%/√E	δ t < 300 ps	< 150 ps
FTOF	60 - 110 ps (p1b)	60 - 110 ps (p1b)	90 - 180 ps (p1a)	90 - 250 ps (p1a)
нтсс	$eff_{\pi} < 1\%$	< 1%	<nphe> = 16</nphe>	16
LTCC	eff = 90%	TBD	δ t = 1 ns	TBD
RICH	δ t < 1 ns	0.7 ns	π/K rej > 500	TBD
SVT	5/N > 10	~14	δ x = 50 - 65 μ m	~55 µm

*Entries highlighted in red have not yet met spec's

Concluding Remarks

- The calibration suites for all subsystems are well advanced
 - Nominal calibration procedures followed for RG-A/K/B cooking for DNP2019
 - Development work continues (optimization and fine-tuning in most cases)
 - Calibration teams trained for production calibrations with new software release
 - Service task: Calibrators assigned not by Run Group but by year
 - Effect on calibrations of TBD for:
 - new DC and CVT alignment
 - new torus field map
 - new forward and central tracking

*See Mac Mestayer's talk

- Development of timelines to monitor subsystem calibrations have proven essential for determining calibration shifts and issues:
 - Subsystems defined metrics that will be used to determine when to recalibrate
 - Timeline quantities for each subsystem still being refined and optimized
- Limitations of calibrations toward achieving design specs being investigated
 - Most issues understood and work plans to overcome them in progress
 - Working closely with Software Coordinator, Software Group, and the RG Analysis Coordinators

CLAS12 Calibration Sequence

1) DC (+ FTOF Time Matching) Calibration:

- time \rightarrow distance calibration
 - relies on at least crude ST calibration from FTOF (few ns level)
 - calibrate offset between FTOF FADC and TDC time

2) FTOF (+ CTOF Time Matching) Calibration:

- energy calibration
 - can be done before DC calibration using even crude DC calibration parameters for path length corrections
- timing calibration
 - calibrate FTOF timing; employs PID from EB (requires initial FTOF calib)
 - defines event ST using electron in ECAL (1st option), positron in ECAL (2nd option), high momentum pion in DC/FTOF (3rd option)
 - calibrate offset between CTOF FADC and TDC time

3) CLAS12 Subsystem Calibration:

- CND, CTOF, ECAL, FT (Hodo, Cal), HTCC, LTCC, RICH calibrations
 - timing calibration employs event ST from FTOF; employs PID from EB (requires initial CTOF calib)
 - energy calibration employs PID from EB

4) RF Calibration:

Capture overall RF timing shifts run-by-run

D.S. Carman, CLAS Collaboration Meeting - Nov. 2019

recook

recook

Subsystem Recalibration Criteria

Subsystem	Recalibration Criteria			
CND	Recambration criteriaTiming: $<\Delta t > 165 \text{ ps}$ C			
CIND	Gains: <gain shift=""> > 10%</gain>			
DC	T _{max} > ±5 ns / ±20 ns (partial /full)			
ECAL	Timing: var(δ t) > 300 ps			
CLAL	Gain: <gain shift=""> > 5%, var(G) < 5%</gain>			
	CAL energy: $\sigma(\pi^0 \text{ mass}) > 20\%$ or 2-3 MeV shift			
FT	CAL timing: <resolution> worsens by 10%</resolution>			
L I	HODO energy: MIP peak position shifts by > 0.2 MeV			
	HODO timing: <resolution> worsens by 10%</resolution>			
TOF	Gains: <gain shift=""> > 10%</gain>			
IUL	Timing: <at> > 170 ps (p1a), > 90 ps (p1b), > 88 ps (CTOF)</at>			

recalibrations required after readout or HV changes
 RF calibrated run-by-run
 HTCC, LTCC, RICH : TBD

Run Group A/K - Calibration Team

Subsystem	Group Leader	RG-A/K Calibrator(s)
BAND	Larry Weinstein	Florian Hauenstein, Efrain Segarra, Reynier Cruz Torres
CND	Silvia Niccolai	Pierre Chatagnon
CTOF	Daniel S. Carman	Chan Kim
DC	Mac Mestayer	Dilini Bulumulla, Taya Chetry, Shirsendu Nanda
ECAL	Cole Smith	Cole Smith/Joshua Artem Tan
FT	Raffaella De Vita	Raffaella De Vita, Nick Zachariou
FTOF	Daniel S. Carman	Christopher McLauchlin
HTCC	Youri Sharabian	Nick Markov, Will Phelps
LTCC	Maurizio Ungaro	Maurizio Ungaro
MVT	Maxime Defurne	Maxime Defurne, Guillaume Christiaens
RF	Raffaella De Vita	Jose Carvajal
RICH	Marco Contalbrigo	Marco Contalbrigo, Andrey Kim
SVT	Yuri Gotra	Yuri Gotra

Run Group B - Calibration Team

Subsystem	Group Leader	Calibrator(s)
BAND	Larry Weinstein	Florian Hauenstein, Efrain Segarra, Reynier Cruz Torres
CND	Silvia Niccolai	Paul Naidoo
CTOF	Daniel S. Carman	Achyut Khanal
DC	Mac Mestayer	Dilini Bulumulla, Taya Chetry, Shirsendu Nanda
ECAL	Cole Smith	Cole Smith, Susan Schadmand
FT	Raffaella De Vita	Raffaella De Vita, Nick Zachariou, Susan Schadmand, Alessandra Filippi
FTOF	Daniel S. Carman	Jose Carvajal
HTCC	Youri Sharabian	Isabella Illari
LTCC	Maurizio Ungaro	Maurizio Ungaro
MVT	Maxime Defurne	Maxime Defurne, Gerry Gilfoyle
RF	Raffaella De Vita	Jose Carvajal
RICH	Marco Contalbrigo	Hyon-Suk Jo
SVT	Yuri Gotra	Yuri Gotra