Correlations in di-hadron electroproduction

Harut Avakian (JLab)

CLAS Collaboration Meeting, November 24, 2019

- TMDs: assumptions, measurements, extractions, interpretation
- Dihadron production at CLAS12
 - 2pion channels
- Spin observables as possible key to the source of SSAs
- Conclusions

Hadron production in hard scattering

Modeling of q-q-bar correlations with spins and momenta in the process (not in PYTHIA) will be important for understanding of the dynamics

Hadronization and factorization

 $F_{XY}^{h}(x, z, P_{T}, Q^{2}) \propto \sum H^{q} \times f^{q}(x, k_{T}, ..) \otimes D^{q \to h}(z, p_{T}, ..) + Y(Q^{2}, P_{T}) + \mathcal{O}(M/Q)$ $\int d^{2}\vec{k}_{T} d^{2}\vec{p}_{T} \delta^{(2)}(z\vec{k}_{T} + \vec{p}_{T} - \vec{P}_{T})$

Hadronization Function \rightarrow conditional probability to produce hadron **h**

$$H_{h/N}^{q'}(x,\mathbf{k}_T,Q^2;x_F,\mathbf{P}_T^h;\mathbf{s}_q',\mathbf{S}_N)$$

Quark Fragmentation Functions (universal and independent)

 $D_{a,s'}^h(z,\mathbf{p}_T,Q^2)$

Where this works?

P_{T} of pions from rho decays: LUND string fragmentation

 $P_{\tau}\mbox{-dependence}$ of rho is similar to the one for decay pions at small P_{τ}

Fraction of direct $\pi\text{+}$ increases with P_{T}

Kinematic correlations in pi+ SIDIS:CLAS12

 $ep \rightarrow e'\pi + X$ from CLAS12 inbending data (tight fiducial cuts on e-, EB ID for pions with E π >1GeV and angles>10 degree)

Averages of kinematical variables change with z of the pions, but not significantly

Averages of missing mass and momentum transfer change significantly with z of the pions

The role of vector mesons and dihadrons in SIDIS

CLAS-6 data indicated there is a significant dependence of SSA on the source of the pion

Disecting the SSA in $ep \rightarrow e'\pi + X$ from CLAS12

Observed SSA for the inclusive π + changes significantly with the π - z

Kinematic correlations in π + SSA

More asymmetric is the di-hadron bigger is the SSA for single pion

Kinematic correlations in π + SSA

(00)<0 -0 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -0.04 -0.05 -0.04 0 2 6 4 2 4 0 6 **t**_{ρ**0**} t_{ρ0}

In the rho-region the pion SSA seem to be smallest (need more studies)

SUMMARY

- The CLAS12 data supports predictions from different MCs of very significant fraction of inclusive pions coming from correlated dihadrons.
- Higher fraction of hadrons with spin-1 vs spin-0 in hadronization will have a number of implications
- The observables for pions from rhos have peculiar spin and momentum dependences and may require different RC, modeling, and interpretation
- Understanding of exclusive production of hadrons, in particular, at large t, where they show similar behavior, will be important for SIDIS
- Modeling of spin-orbit correlation will help to understand the dynamics and define the regions where independent fragmentation is most applicable

The interpretation of SIDIS multiplicities and SSAs in single-hadron production and di-hadron production, depends on understanding of contributions to those samples from correlated semi-inclusive and exclusive di-hadrons in general, and rho mesons, in particular.

Support slides

Dihadrons: key to hadronization?

Origin of non-Gaussian tails

- the "real" multiplicity may be lower with most hadrons produced from struck quark with large z, and low z fraction filled by VM decay pions
 - intrinsic k_T may be higher
 - the z-dependence enhanced at large z (may be tuned better to describe single and di-hadron distributions)
 - contributions to pions from target fragmentation may be less relevant
- 2) Combined increase of average transverse momentum and fraction of VMs allows description of non Gaussian tails at large P_T indicating most hadrons come from TMD region

Kinematic correlations in pi+ SSA (outbending)

For the same average value of z, $\pi + \pi^-$ pair has a wider P_T-distribution

compare different distributions: 70% vs 50%

Jefferson Lab

H. Avakian, CLAS12 Coll., Nov

Sources of inclusive hadron electro-production

QCD: from testing to understanding

P_{T} -widths

For the same <z> rho (pi+pi-) is wider than pi+

Quark flavours and transverse momenta in PYTHIA

field energy between them can be transformed into the sum of the two transverse masses m_T . quarks created in one point and then tunnel out to the classically allowed region. The probability is given by

$$\exp\left(-\frac{\pi m_{\perp}^2}{\kappa}\right) = \exp\left(-\frac{\pi m^2}{\kappa}\right)\exp\left(-\frac{\pi p_{\perp}^2}{\kappa}\right)$$

the string tension $\kappa \approx 1~{\rm GeV}/{\rm fm} \approx 0.2~{\rm GeV^2}$

The factorization of the transverse momentum and the mass terms leads to a flavour independent Gaussian spectrum for the $\mathbf{p}x$ and $\mathbf{p}y$

The **p**T of a meson $q_{i-1} q_i$ is given by the vector sum of the **p**T's of the q_{i-1} and q_i constituents, which implies Gaussians in p_x and p_y with a width \sqrt(2) that of the quarks themselves

flavor dependence u : d : s : c \rightarrow 1 : 1 : 0.3 : 10⁻¹¹

Spin counting arguments would then suggest a 3:1 mixture between the lowest lying vector and pseudoscalar multiplets. Wave function overlap arguments lead to a relative enhancement of the lighter pseudoscalar states

comparing clas12 data with MC

H. Avakian, CLAS12 Coll., Nov

Extracting the average transverse momenta

Jefferson Lab

Dihadron production

$P_{\rm T}$ of pions from rho decays: LUND string fragmentation

RGA: $ep \rightarrow e'\pi^+\pi^-X$

Jefferson Lab

H. Avakian, CLAS12 Coll., Nov

Transverse momentum distributions of partons

Correlations between target and current

how the remnant system dresses itself up to become a full-fledged hadron
correlation with the spin of the target or/and the produced particles

Hadronization effects

$$f_1^q(x,k_T) \otimes D_1^{q \to h}(z,p_T) \; \frac{D_1^{u \to \pi^+}(z,p_T)}{D_1^{u \to K^+}(z,p_T)}$$

•Widths of fragmentation functions are flavor dependent. (H. Matevosyan, A. W. Thomas & W. Bentz)

understanding of spin-orbit effects in hadronization

