FIDUCIAL VOLUME STUDIES

S. Diehl, A. Movsisyan, E. Segarra, O.Soto

Introduction

- The goal: To define effective fiducial volume for various detector components using qualitative criteria.
- DC: Several alternative methods were studied. Main characteristics for the fiducial volume definition are χ^2 or spacial distributions of reconstructed tracks.
- PCAL: Estimates of effective fiducial volume are based on spacial distributions sampling fraction.

DC fiducial volume cuts

Three different methods were used to define DC fiducial volume cuts

Define fiducial volume cuts based on average χ^2 distribution. Using local ϕ and θ coordinates of the hits in DC

Define fiducial volume cuts based on average χ^2 distribution. Using x and y coordinates of the hits in DC

Define fiducial volume cuts based on count rates. Using local ϕ and θ coordinates of the hits in DC

- Calculate local ϕ and θ coordinates of the tracks in each sector and each region of DC.
- Calculate average χ^2/ndf in bins of local ϕ and θ .
- Analyze the ϕ distribution of averaged χ^2 /ndf in slices of θ .

DC region I: Electrons with PID=II:

RGB data: runs 6428, 6433, 6442, 6450, 6467, 6474, 6481, 6492

DC region 3: Electrons with PID=11:

Reg. 1	Sec. 1		Sec. 2		Sec. 3		Sec. 4		Sec. 5		Sec. 6	
P0	-93.5559	94.6925	-83.3437	90.7231	-77.5379	92.7231	-86.1796	88.8643	-80.3697	85.3909	-82.7300	89.0879
P1	65.1838	-66.27602	59.7779	-60.6672	53.9136	-63.8867	57.9769	-62.7975	55.9105	-57.9323	59.9868	-62.6443
P2	-4.77460	4.92772	-4.41993	4.04905	-3.6797	4.60712	-3.91174	4.6568	-3.8367	3.93717	-4.5063	4.60160
P3	0.04683	-0.04894	0.04439	-0.03636	0.03485	-0.04508	0.03708	-0.04679	0.04540	-0.03717	0.04540	-0.04573

In each sector 20 Slices in x where done and the point where the two exponentials intercept was selected per each slice.

sec	pl0	pl1	pl2	pl3	pr0	pr1	pr2	pr3
1	9.4487	-1.85609	24.0573	-1.38684	24.9107	1.42733	13.9578	1.72647
2	9.6988	-1.82014	28.3571	-1.27469	25.0105	1.35964	13.9829	1.73264
3	11.1452	-1.84042	28.6746	-1.38146	27.9758	1.3651	23.1612	1.58585
4	16.2675	-1.66529	23.0932	-1.43993	23.839	1.56257	19.0212	1.6702
5	18.8583	-1.68735	23.4829	-1.5583	24.107	1.59231	23.5651	1.5467
6	12.9947	-1.73672	26.7278	-1.28616	25.1901	1.30976	25.1906	1.30975

Calculate local ϕ and θ coordinates of the tracks in each sector and each region of DC.

DC regions I,2,3: Electrons with PID=II: RGA data a_{aph} b_{b} b_{b}

Aram Movsisyan, DPWG meeting 14.11.2019

Comparison of different methods

Comparison of methods I and 2. Example for sector I of DC region I. Curves represent the cuts obtained with method 2.

Comparison of methods I and 3. The cuts obtained with both methods are shown for sector 3 of DC region 3.

reduction in statistics varies between methods from 0.8 to 1.3 %.

PCAL

Sampling fraction distributions for electrons: PID=11 & P > 2 GeV

- Apply hard cuts on U,V and W coordinates. (> 60)
- Define the mean and the width of sampling fraction (to be used as a reference)
- Scan over V and W and calculate the fraction of events outside 3σ region.

ProjectionY of binx=60 [x=16.52..16.80]

PCAL

PCAL

72.85% of electrons pass 30% cut 55.15% of electrons pass constant cut V,W> 19 cm

Thank you !

