Analysis Updates on the Λ Hadronization Studies (EG2 Dataset)

Taya Chetry

Mississippi State University

Contents Introduction to hadronization Previous measurements About EG2 experiment Preliminary results Simulation: First look Future directions

CLAS Collaboration Meeting Jefferson Lab 11/14/2019

Probing QCD Dynamics

• Hadronization process:

- Evolution of a colored bare quark into a fully dressed hadron.
- A direct probe of the QCD confinement dynamics: quark propagation and fragmentation.

Depending on the size of nucleus and the energy of the probe, hadron formation can take place inside or outside the nucleus.

Taya Chetry

 Λ Fragmentation Study

Probing QCD Dynamics

- Hadronization Timescales:
 - Production time, τ_p : Time spent by a deconfined quark to neutralize its color charge.
 - Formation time, τ_f : Time required to form a regular hadron.

- Hadronization studies:
 - Provide information on the dynamical scales of the process.
 - Constrain existing models that provide predictions of its time-characteristics.

Experimental Observables

• Multiplicity ratio:

$$R_{\rm A}^{h}\left(\nu, Q^{2}, z, p_{T}, \phi\right) = \frac{\frac{N_{h}(\nu, Q^{2}, z, p_{T}, \phi)}{N_{e}(\nu, Q^{2})|_{\rm DIS}}\Big|_{\rm A}}{\frac{N_{h}(\nu, Q^{2}, z, p_{T}, \phi)}{N_{e}(\nu, Q^{2})|_{\rm DIS}}\Big|_{\rm D}}$$

- Normalization with the electron DIS events that permits cancellation of the initial state effects.
- Transverse momentum broadening:

$$\Delta P_T^2 = \left\langle P_T^2 \right\rangle_A - \left\langle P_T^2 \right\rangle_D$$

D = loosely bound nuclei A = Heavy Nuclei

- These observables provide insights about
 - The hadronization timescales, i.e., production and formation times.
 - Parton energy loss (related to the p_T broadening).
 - Hadron attenuation (related to R_A^{h}).

 Λ Fragmentation Study

CLAS EG2 Dataset

- Targets: Deuterium, Carbon, Iron, Lead, Tin, Aluminum.
- Deuterium and solid target in beam simultaneously for reduced run-time systematics:

CLAS Collaboration Meeting

Taya Chetry

 Λ Fragmentation Study

Reaction Channel

• SIDIS

- $e + A \rightarrow e' + \Lambda$
- Scattered electron and Lambda decay products detected.
- $\Lambda \rightarrow \pi^{-} + p$
 - ~64% branching ratio
- e^{-} and π^{-} identification:
 - Method:
 - L. El Fassi (CLAS Collaboration),
 - Physics Letters B 712 (2012) 326-330.
 - e⁻: Positive response in the four CLAS subsystems, i.e. DC, CC, SC and EC.
 - π⁻: Matching signal in drift chambers (DC) and scintillator counters (SC) to correlate the negatively charged particle's momentum and velocity and select the pion sample.

- Matching signal in DC and SC.
- Timing versus momentum dependent study to select proton candidates - (Previously, a 9th order function was used to select proton events).

- Matching signal in DC and SC.
- For different momentum slices, ΔTOF distributions are fit using a Gaussian function.

Check out the animation <u>here</u>!

- Matching signal in DC and SC.
- For different momentum slices, ΔTOF distributions are fit using a Gaussian function.

Check out the animation <u>here</u>!

- Matching signal in DC and SC.
- For different momentum slices, ΔTOF distributions are fit using a Gaussian function.

Check out the animation <u>here</u>!

A Fragmentation Study 11/14/2019

- For different momentum slices, ΔTOF distributions are fit using a Gaussian function.
- At higher momenta, positive pions start to populate.

Check out the animation <u>here</u>!

- For different momenta slices, TOF distributions are fit using a Gaussian function.
- At higher momenta, positive pions start to populate.

Check out the animation <u>here</u>!

Proton Identification: Compared other methods

- The Gaussian mean and sigma are plotted.
- ROOT TSpline3 function is employed.
- Other methods are shown as comparison.

Taya Chetry

- Matching signal in DC and SC.
- Timing versus momentum dependent study to select proton candidates using ROOT's spline interpolation function.

Taya Chetry

 Λ Fragmentation Study

Reaction Vertex

• Simultaneous targets: Necessary to correctly reconstruct the reaction vertex.

• All the identified particles underwent the vertex correction.

Vertex Correction: Consistency check

• Vertex corrections are applied appropriately. Consistent over entire run range.

Selection of SIDIS Events: Kinematic Cuts

W > 2 GeV

 \rightarrow to avoid contamination from resonance region.

 $\mathbf{Q}^{\scriptscriptstyle 2}$ > 1 GeV²

 \rightarrow to probe nucleon substructure.

y < 0.85 (based on HERMES study)

 \rightarrow to reduce the size of radiative effects.

Production Channel

- Reconstruct Λ via its decay products π^{-} and p.
- Perform various sanity checks of the background subtraction and yield extraction techniques.
- Event mixing method is utilized to subtract the combinatoric background based on MINUIT minimization (RooFit).

Λ Yield Extraction

- A sample z-bin: A invariant mass distribution after the background subtraction using RooFit minimization (Breit-Wigner + combinatoric background).
- z: fraction of the struck quark's initial energy carried by the formed hadron

a hin	1	0	9	4	F	G	7	0	0
z-bin	1	2	3	4	9	0	1	0	9
Range	[0.28, 0.36)	[0.36, 0.42)	[0.42, 0.48)	[0.48, 0.54)	[0.54, 0.6)	[0.6, 0.65)	[0.65, 0.7)	[0.7, 0.8)	[0.8, 0.9)

19 CLAS Collaboration Meeting

Taya Chetry

 Λ Fragmentation Study

Λ Yield Extraction

- A sample z-bin: A invariant mass distribution after the background subtraction using RooFit minimization (Breit-Wigner + combinatoric background).
- z: fraction of the struck quark's initial energy carried by the formed hadron

z-bin	1	2	3	4	5	6	7	8	9
Range	[0.28, 0.36)	[0.36, 0.42)	[0.42, 0.48)	[0.48, 0.54)	[0.54, 0.6)	[0.6, 0.65)	[0.65, 0.7)	[0.7, 0.8)	[0.8, 0.9)

20 CLAS Collaboration Meeting

Taya Chetry

 Λ Fragmentation Study

Multiplicity Ratio

Preliminary

21 CLAS Collaboration Meeting

Taya Chetry

Λ Fragmentation Study

Transverse Momentum Broadening

• The pT-broadening is calculated as:

$$\Delta P_T^2 = \left\langle P_T^2 \right\rangle_A - \left\langle P_T^2 \right\rangle_D$$

where,

$$P_T^2 = |\vec{v_1}|^2 - \frac{(\vec{v_1} \cdot \vec{v_2})^2}{|\vec{v_2}|^2}$$

$$\vec{v_1} = \vec{p}_{\pi^-} + \vec{p}_p \qquad \qquad \vec{v_2} = \vec{p}_e - \vec{p}_{e'}$$

• Error on the broadening is calculated as:

$$\sigma_{\Delta P_T^2}^2 = \frac{(\left\langle P_T^4 \right\rangle - \left\langle P_T^2 \right\rangle^2)_A}{N_A^h} + \frac{(\left\langle P_T^4 \right\rangle - \left\langle P_T^2 \right\rangle^2)_D}{N_D^h}$$

- <> represents weighted average in the above equations.
- N^h = Number of hadrons coming from liquid (D) or solid (A) target.
- 22 CLAS Collaboration Meeting

Taya Chetry

 Λ Fragmentation Study

Transverse Momentum Broadening

- We consider $1.1 \leq M_{\Lambda} < 1.14$ GeV for pT-broadening calculation.
- We also divide this mass range in three parts,
 - Sideband 1: $M_{\Lambda} \in [1.10, \mu 3\sigma)$ GeV
 - 3 σ region : $M_{\Lambda} \in [1.10, \mu + 3\sigma)$ GeV

μ, σ: are extracted from Breit-Wigner fits (RooFit) for each z-bin considered

• Sideband 2: $M_{\Lambda} \in [\mu + 3\sigma, 1.14)$ GeV, as illustrated:

11/14/2019

²³ CLAS Collaboration Meeting

Transverse Momentum Broadening

- We consider $1.1 \leq M_{\Lambda} < 1.14$ GeV for pT-broadening calculation.
- We also divide this mass range in three parts,
 - Sideband 1: $M_{\Lambda} \in [1.10, \mu 3\sigma)$
 - 3σ region : $M_{\Lambda} \in [1.10, \mu + 3\sigma)$
 - Sideband 2: $M_{\Lambda} \in [\mu + 3\sigma, 1.14)$.

μ, σ: are extracted from Breit-Wigner fits (RooFit)

- We calculate pT broadening for the entire mass range for each target configuration. (A)
- We also calculate pT broadening from combinatoric background for entire mass range. (B)
- The average pT broadening from combinatoric background for each region is also calculated. (C)
- Method 1: A B
- Method 2: A C

Transverse Momentum Broadening (z-dependence)

 p_T broadening varies as a function of the fraction of the struck quark's initial energy carried by the formed hadron.

Transverse Momentum Broadening (z-dependence)

 p_T broadening varies as a function of the fraction of the struck quark's initial energy carried by the formed hadron.

Transverse Momentum Broadening (Method 1 vs Method 2)

Taya Chetry

 Λ Fragmentation Study

Transverse Momentum Broadening (A-dependence)

p_T broadening is more enhanced for heavy nuclei as expected. (Sideband is not subtracted!) Broadening is enhanced for heavier nuclei.

Transverse Momentum Broadening (A-dependence)

A – dependence for p_T broadening extracted from the two methods (sideband subtracted).

Notice the odd behavior for the Fe.

Taya Chetry

A Fragmentation Study 11/14/2019

Acceptance Correction: General Steps

- CLAS acceptance \rightarrow Detection, track reconstruction and event selection efficiencies.
 - The efficiency calculation is based on simulation.
- PYTHIA generator is being used to simulate events of interest.
 - Contains a model of non-perturbative (soft) and perturbative DIS processes.
 - Modified to incorporate the Fermi motion and nuclear parton distribution functions.

(Package provided by Ahmed El Alaoui, Santa Maria University, Chile)

- Apparatus simulation: Standard CLAS simulation package.
 - Perform a comparison of several kinematic variables using real and simulated data.

Taya Chetry

A Fragmentation Study 11/14/2019

32 CLAS Collaboration Meeting

Taya Chetry

Λ Fragmentation Study 1

Taya Chetry

A Fragmentation Study 11/14/2019

Taya Chetry

A Fragmentation Study 11/14/2019

- We are actively working on the generator to improve the comparison between the real data and simulation. (Suggestions are welcome)
- Promising agreement between experimental data and simulation.
- Variables will be binned to perform multi-dimensional efficiency calculation:

$$Eff = \frac{N_{acc}(Q^2, \theta_{\pi-}, ...)}{N_{gen}(Q^2, \theta_{\pi-}, ...)}$$

• Weights are then calculated as $1/Eff \rightarrow apply$ to R_A^{h} , p_T broadening.

 Λ Fragmentation Study

What's next?

- Next steps would include:
 - Optimization of event generator
 - Better comparison of Data with Simulation
 - Application of acceptance corrections, radiative corrections and perform systematic studies.
 - Study other dependencies of R_{Λ} on Q^2 , P_T^2 (Cronin effect).

Thank you for your attention! Questions/Comments/Suggestions?

Thank you!!

Extras

• Feynman x expressions:

$$\begin{array}{l} \text{Raphael} \\ x_{F} &= 2 \frac{zM_{p}v^{2} - zQ^{2}v - (M_{p} + v)P.q}{\sqrt{v^{2} + Q^{2}}(W^{2} - M_{h}^{2})} \end{array} \\ \text{Hayk} \\ x_{F} &= 2 \frac{(v + M_{p})\sqrt{p^{2} - p_{T}^{2}} - zv\sqrt{Q^{2} + v^{2}}}{\sqrt{(W^{2} - M_{h}^{2})^{2} - 4M_{\pi}^{2}W^{2}}} \\ \text{Expressed in the} \\ \gamma^{*}\text{N CM frame} \end{array}$$

$$\label{eq:KF} \begin{split} \text{Modified expression (Hayk's)} \\ \hline x_F &= 2 \frac{(\nu + M_p) \sqrt{p^2 - p_T^2} - z \nu \sqrt{Q^2 + \nu^2}}{\sqrt{(W^2 - M_K^2 - M_\Lambda^2)^2 - 4M_\Lambda^2 W^2}} \end{split}$$

Plot courtesy: Ahmed

Taya Chetry

Feynman $x, x_{_F}$

Raphael

$$x_F = 2 \frac{zM_p v^2 - zQ^2 v - (M_p + v)P.q}{\sqrt{v^2 + Q^2}(W^2 - M_h^2)}$$

Hayk

$$x_F = 2 \frac{(v + M_p)\sqrt{p^2 - p_T^2} - zv\sqrt{Q^2 + v^2}}{\sqrt{(W^2 - M_n^2 - M_\pi^2)^2 - 4M_\pi^2 W^2}}$$

Ahmed

$$x_F = \frac{|\vec{p}_{||}|}{|\vec{q}|}$$

Expressed in the
 $\gamma^* N CM$ frame

40 CLAS Collaboration Meeting

Taya Chetry

Plot courtesy: Ahmed *A Fragmentation Study*

CLAS 6: Hadronization results on Meson channels

1 CLAS Collaboration Meeting

Taya Chetry

 Λ Fragmentation Study

CLAS 6: Hadronization results on Meson channels

CLAS-6 transverse momentum broadening results for charged pions shows a similar behavior First time ever to study the hadronization process of Λ⁰ hyperon and probe the forward (current) and backward (target) fragmentation regions.

SIDIS Production

Semi-Inclusive Deep Inelastic Scattering (SIDIS) is used to gain access to physical observables.

Taya Chetry

CLAS @ JLab before the upgrade

- Jefferson Lab: Newport News, VA;
- CEBAF: accelerated electrons up to 6 GeV;
- Experimental Halls: A, B, C (and D, 12 GeV upgrade);
- Hall B: electron or photon beam;

Hall B

Hadronization Studies with CLAS12 @ JLab

With 12 GeV upgrade of the CEBAF: accelerate electrons up to 11 GeV in Hall B.

Actively underway with existing 5 GeV data								
meson	сτ	mass	flavor content	baryon	сτ	mass	flavor content	
π^0	25 nm	0.13	uudd	p	stable	0.94	ud	
π^+,π^-	7.8 m	0.14	ud, du	\bar{p}	stable	0.94	ud	
η	170 pm	0.55	uuddss		79 mm	1.1	uds	
ω	23 fm	0.78	uuddss	A(1520)	13 fm	1.5	uds	
η	0.98 pm	0.96	uuddss	Σ^+	24 mm	1.2	us	
ϕ	44 fm	1.0	uuddss	Σ^{-}	44 mm	1.2	ds	
f1	8 fm	1.3	uuddss	Σ^0	22 pm	1.2	uds	
K	27 mm	0.50	ds	Ξ^0	87 mm	1.3	us	
<i>K</i> ⁺ , <i>K</i> ⁻	3.7 m	0.49	us, us	Ξ·	49 mm	1.3	ds	

DIS channels: stable hadrons accessible with the CLAS12 detector

- Span a wider range of nuclei masses \rightarrow Better understanding of A dependence;
- Study of various hadrons production \rightarrow Improve our understanding of hadron's formation mechanism.
- Higher statistical precision \rightarrow Multi-dimensional study of physics observables dependencies for a comprehensive extraction of the production and formation time scales.

HERMES Multiplicity Ratios

A. Airapetian et al. Nucl. Phys. vol. B780, pages 1–27, 2007

- All pion flavors and K⁻ experience similar attenuation.
- K^+ is less attenuated compared to π^+ most likely due to a contamination from $\pi + p \rightarrow \Lambda + K$ (B. Kopeliovich *et al.*) from the target fragmentation.

Taya Chetry

HERMES Multiplicity Ratios

48 CLAS Collaboration Meeting

Taya Chetry

A Fragmentation Study 11/14/2019

HERMES Transverse Momentum Broadening

Previous measurements

- Reduced broadening at high z favors no prehadron interaction.
- $K^+ p_T$ broadening is different compared to that of pions \rightarrow Flavor dependence?
- Similar effect for nuclear size dependencies, $A^{1/3}(\propto r)$ and $A^{2/3}(\propto r^2) \rightarrow$ Calls for more data?

A Fragmentation Study 11/14/2019