

Update: Validation of neutrino energy estimation using electron scattering data

Mariana Khachatryan - ODU

Outline

- 1. Introduction.
- 2. June 2019 status:
 - Looked at (e,e'), (e,e'p) events with zero detected pions and photons.
 - Reconstructed energies E_{Cal}, E_{QE}.
 - > Completed subtraction for undetected π^+ , π^- , γ and extra p.
 - Modified e⁻ momentum correction.
 - Analyzed the 1.1 GeV e2a data.
 - Determined binding energy values for E_{Rec} calculations.
 - Analysis review ongoing.
- 3. Status today:
 - Obtained final results on energy reconstruction.
 - Completed estimation of uncertainties from different sources.
 - \succ Compared to ν event generator results running in e⁻ mode.
 - Show potential impact on DUNE oscillation analysis.
 - Completed analysis review.

Far detector

T2K, Phys. Rev. D 91, 072010 (2015)

Energy Reconstruction for QE reactions

(1) Cherenkov detectors:

- Detect: leptons & pions
- Miss: protons and neutrons

(2) Tracking detectors:

- Detect: Charged particles + π^0
- Miss: Neutrons and charged particles below threshold

Use lepton kinematics assuming QE interaction Use final-state calorimetry assuming low residual excitations

ε

$$E_{QE} = \frac{2M\varepsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos(\theta_l))} \qquad E_{Cal} = E_l + T_p + \varepsilon$$

$$E_l \qquad \varepsilon = E_{bind} = \text{Binding energy} \qquad E_l \qquad \theta_l$$

$$E_v \qquad E_v \qquad E_v \qquad E_v \qquad E_v \qquad E_v$$

2

Targets and beam energies

Targets in E2a:

- ³He
- ⁴He
- ¹²C
- ⁵⁶Fe

Targets in neutrino experiments:

T2K: CH, H₂O Minerva: ³He, ⁴He, C, Fe, H₂O Microboone: Ar Miniboone: mineral oil (C, H, O) Nova: C₆H₃(CH₃)₃ DUNE: Ar

Beam energies E2a:

• 1.161 GeV

- 2.261 GeV
- 4.461 GeV

Neutrino expt. beam energies

Scale the electron scattering data with $1/\sigma_{Mott}$ to have "neutrino like" data!

Background Subtraction

As close to QE as one can get:

- Scattered electron,
- Knockout proton,
- Zero pion,
- Zero gammas in the EC.

Need to account for undetected π , γ and extra protons.

Background Subtraction in (e,e') analysis

Subtract for undetected π^{\pm} and γ :

Data Driven Correction (example 1π):

- 1. Use measured (e,e' π) events,
- 2. Rotate π around \vec{q} to determine its acceptance A,
- 3. Determine $(e,e')\pi$ contributions using A,
- 4. Subtract (e,e') π contributions,

Background Subtraction in (e,e') analysis

Subtract for undetected π^{\pm} and γ :

Data Driven Correction (example 1π):

- 1. Use measured (e,e' π) events,
- 2. Rotate π around \vec{q} to determine its acceptance A,
- 3. Determine $(e,e')\pi$ contributions using A,
- 4. Subtract (e,e') π contributions,
- 5. Repeat for 2π , 3π , 4π .

(e,e') π^{\pm}/γ subtraction

2.26 GeV

 π^{\pm}/γ subtraction

 π detected in TOF+DC γ detected in EC

Background Subtraction in (e,e'p) analysis

Want A(e,e'p) events.

Subtract for undetected π , γ and multiple p.

Data Driven Correction (example $1p+1\pi$):

- 1. Use measured (e,e'p π) events,
- 2. Rotate π and p around \vec{q} to determine their acceptance A,
- 3. Determine $(e,e'p)\pi$ contributions using A,
- 4. Subtract $(e,e'p)\pi$ contributions,
- 5. Do the same for 2p, 3p, 2p+ π etc

⁵⁶Fe 4.4 GeV

$$E_{QE} = \frac{2M\varepsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos(\theta_l))}$$

$$E_{Cal} = E_l + T_p + \varepsilon$$

1. E_{OE} has worse peak resolution than $E_{Cal.}$

- 2. Same tail for E_{QE} and $E_{Cal.}$
- 3. ⁵⁶Fe is predominantly tail.
- 4. ⁵⁶Fe is much worse than ⁴He.

Energy reconstruction: E Dependence Fractional energy feed down $(E_{rec} - E_{true} / E_{true})$ (e,e'p) $\mathsf{E}_{\mathsf{Cal}}$ E_{QE} Weighted counts Weighted counts 0.8 0.8 Ge 0.6 ¹²C 0.6 4 GeV 0.4 2 GeV 0.4 1 GeV 0.2 0.2 1 GeV 0 -1 -0.6. -0.4 -0.2 0.2. 0.4 -0.4 -0.2 0.2. -0.8. -0.8. -0.6. -1 0 0 $E_{Cal} - E_{true} / E_{true}$ $E_{QE} - E_{true} / E_{true}$

Better reconstruction at lower energies.

0.4

Energy reconstruction: method dependence

Agreement between to methods doesn't imply correct energy reconstruction.

4.46 GeV Ecalor[GeV] 10⁵ 10⁴ 3.5 10³ 2.5 10² 2 10 1.5 1 4.5 5 E_{QE}[GeV] 1.5 3.5 2 2.5 З 4

	1.1 GeV		2.2 GeV		4.4GeV	
	E _{QE} 1e	E _{Cal} 1e1p	E _{QE} 1e	E _{Cal} 1e1p	E _{QE} 1e	E _{Cal} 1e1p
³He	<mark>47</mark>	72	<mark>32</mark>	54	<mark>25</mark>	44
⁴He			<mark>24</mark>	47	<mark>18</mark>	36
¹² C	<mark>33</mark>	55	<mark>20</mark>	39	<mark>21</mark>	28
⁵⁶ Fe			<mark>16</mark>	26	<mark>16</mark>	16

E_{rec} conclusions:
1) E_{cal} better than E_{QE}

% of events reconstructed to within 5% of $E_{\mbox{\scriptsize beam}}$

	1.1 GeV		2.2 GeV		4.4GeV	
	E _{QE} 1e	E _{Cal} 1e1p	E _{QE} 1e	E _{Cal} 1e1p	E _{QE} 1e	E _{Cal} 1e1p
³He	<mark>47</mark>	72	<mark>32</mark>	54	<mark>25</mark>	44
⁴He			<mark>24</mark>	47	<mark>18</mark>	36
¹² C	<mark>33</mark>	55	<mark>20</mark>	39	<mark>21</mark>	28
⁵⁶ Fe			<mark>16</mark>	26	<mark>16</mark>	16

E_{rec} conclusions:
1) E_{cal} better than E_{QE}

2) Degrades with E

% of events reconstructed to within 5% of $E_{\mbox{\scriptsize beam}}$

	1.1 GeV		2.2 GeV		4.4GeV	
	E _{QE} 1e	E _{Cal} 1e1p	E _{QE} 1e	E _{Cal} 1e1p	E _{QE} 1e	E _{Cal} 1e1p
³ He	<mark>47</mark>	72	<mark>32</mark>	54	<mark>25</mark>	44
⁴He			<mark>24</mark>	47	<mark>18</mark>	36
¹² C	<mark>33</mark>	55	<mark>20</mark>	39	<mark>21</mark>	28
⁵⁶ Fe			<mark>16</mark>	26	<mark>16</mark>	16

% of events reconstructed to within 5% of $E_{\mbox{\scriptsize beam}}$

- E_{rec} conclusions:
- 1) E_{cal} better than E_{QE}
- 2) Degrades with E
- 3) Degrades with A

1.1 GeV		2.2 GeV		4.4GeV	
E _{QE} 1e	E _{Cal} 1e1p	E _{QE} 1e	E _{Cal} 1e1p	E _{QE} 1e	E _{Cal} 1e1p
<mark>47</mark>	72	<mark>32</mark>	54	<mark>25</mark>	44
		24	47	10	36
<mark>33</mark>	55	20	39	<mark>21</mark>	28
		<mark>16</mark>	26	<mark>16</mark>	16
	1.1 E _{QE} 1e 47 33	1.1 GeV E _{QE} 1e 47 72 33 55	1.1 GeV 2.2 EQE 1e ECal 1e1p EQE 1e 47 72 32 33 55 20 16 16	1.1 GeV 2.2 GeV E_{QE} 1e E_{Cal} E_{QE} 1e E_{Cal} 1e1p 2.2 54 47 72 32 54 33 55 20 39 16 26 26	$1.1 \ \mbox{GeV}$ $2.2 \ \mbox{GeV}$ 4.40 $E_{QE} \ 1e$ E_{Cal} $1e1p$ E_{Cal} $1e1p$ $E_{QE} \ 1e$ 47 72 32 54 25 33 55 20 39 21 16 26 16

E_{rec} conclusions:

- 1) E_{cal} better than E_{QE}
- 2) Degrades with E

3) Degrades with A4) Never very good

Only 16 to 55% of events reconstruct to within 5% of beam energy (for nuclei similar to those used in neutrino detectors).

How do we do better?

2.2 GeV ⁵⁶Fe

$P_{ m miss}^{\perp}$ slices

2.2 GeV

3

- Statistical uncertainty is shown by error bars.
- Uncertainties of the weights for subtraction of undetected π and protons.
 - \diamond Systematic uncertainty due to the ϕ -dependence of the pion cross section modeled and found to be negligible (less than 1%).
 - ♦ Rotate (e,e' π) events enough times to reduce statistical uncertainty below 1%.
 - ♦ Systematic uncertainty due to imperfect description of the geometrical acceptance.
 - \diamond Systematic uncertainty due to γ ID (missing γs and n contamination).

E [GeV]	Uncertainty due to					
	arphi dep.	#(e,e'π) rot.	Imperf. accept.	γ ID cut		
1.1	1%	1%	0.8%	0.1%		
2.2	1%	1%	1.2%	0.5%		
4.4	1%	1%	4%	2%		

0π Data – Generator Comparisons

C(e,e'p) 2.26 GeV

0π Data vs Genie

C(e,e'p)

22

Data vs Genie: E_{beam} Reconstruction

Potential impact on DUNE oscillation analysis

Energy [GeV]

- Compare E_{rec} for $e^{12}C$ to E_{rec} for $v^{12}C$
- Used 1.1, 2.2 and 4.4 GeV e¹²C E_{rec} and interpolated linearly between the energies to get E_{rec} at all incident energies
- Threw events with ν^{12} C Genie
- Reconstruct with v¹²C Genie or e¹²C data

-> Very different oscillation parameters!

Summary

- 1. The first use of electron data to test neutrino energy reconstruction algorithms:
 - select zero-pion events to enhance quasi-elastic signal
 - \diamond Subtract for undetected π and extra p.
 - just using scattered lepton (E_{QE})
 - \diamond used in Cherenkov-type neutrino detectors
 - total energy of electron plus proton (E_{Cal})
 - $\diamond\,$ used in calorimetric neutrino detectors
- 2. Only 0.16-0.55 of events reconstruct to within 5% of the beam energy:
 - better for lighter nuclei and lower energies
 - improved by a transverse momentum cut
 - agreement between two methods does not imply accurate energy reconstruction.
- 3. There is a discrepancy between energy reconstruction from e-Genie and data.
- 4. Probable significant impact on oscillation analysis of proposed \$1.5B DUNE experiment.
- 5. Inspired upcoming "Electrons for Neutrinos" experiment .
- 6. CLAS analysis review complete.
- 7. Paper submission soon.

Afroditi Papadopoulou (MIT@FNAL)

Phi dependence

Cross section for unpolarized pion electroproduction on a single nucleon:

Where p_{π}^* , θ_{π} and φ_{π} are the momentum, scattering and azimuthal angles of the π^0 in the CM frame. Jacobian $J=\partial(Q^2, W)/\partial(E', \cos\theta_e, \theta_e)$, Γ_v is virtual photon flux.

N. Markov et al. arXiv:1907.11974

Phi dependence

Weight without φ_{π} dependence

Weight with φ_{π} dependence

$$W = \frac{\sum_{i=1}^{N_{Undet}} 1}{\sum_{i=1}^{N_{Det}} 1} \qquad \qquad W = \frac{\sum_{i=1}^{N_{Undet}} 1 + \frac{B}{A} \cos\varphi_{\pi} + \frac{C}{A} \cos2\varphi_{\pi}}{\sum_{i=1}^{N_{Det}} 1 + \frac{B}{A} \cos\varphi_{\pi} + \frac{C}{A} \cos2\varphi_{\pi}}$$

Subtracting for undetected one π events in ⁵⁶Fe(e,e') 4 GeV analysis

Negligible phi dependence!