Beam Spin Asymmetries from ep->epπ⁰ in the resonance region

Evgeny Isupov (MSU), Nick Markov (JLab) Kyungseon Joo (UConn), Victor Mokeev (JLab) Insight into the Strong QCD from the Synergy between Experiment, Phenomenology, and Theory

Extraction of γ_vNN* Electrocouplings from Exclusive Meson Electroproduction off Nucleons

 Consistent results on γ_vpN* electrocouplings from different meson electroproduction channels are critical in order to validate reliable extraction of these quantities.

Single meson electroproduction in the resonance region from Hall-B

~)

JLa	b/Hall	В
-----	--------	---

	Q^2	W	
$\frac{d\sigma}{d\Omega}(\pi^0 p, \pi^+ n)$	0.16-0.36	1.1-1.38	[8]
$\frac{d\sigma}{d\Omega}(\pi^0 p)$	0.4-1.8	1.1-1.68	[9]
$\frac{d\sigma}{d\Omega}(\pi^0 p)$	3.0-6.0	1.1-1.39	[10
$\ddot{A}_{LT'}(\pi^0 p)$	0.4, 0.65	1.1-1.66	[1]
$A_t, A_{et}(\pi^0 p)$	0.252, 0.385, 0.611	1.12-1.55	[12
$\frac{d\sigma}{d\Omega}(\pi^+n)$	0.3-0.6	1.1-1.55	[13
$\frac{d\sigma}{d\Omega}, A_{LT'}(\pi^+ n)$	1.7-4.5	1.11-1.69	[14
$\ddot{A}_{LT'}(\pi^+n)$	0.4, 0.65	1.1-1.66	[15
$rac{d\sigma}{d\Omega}(\eta p)$	0.375-1.385	1.5-1.86	[16
$rac{d\sigma}{d\Omega}(\eta p)$	0.17-3.1	1.5-2.3	[17

...

Progress in Particle and Nuclear Physics 67 (2012) 1 I.G. Aznauryan, V.D. Burkert

Exclusive $\pi^0 p$ electroproduction off protons in the resonance region at photon virtualities 0.4 $ext{GeV}^2 \leq Q^2 \leq 1 ext{ GeV}^2$

N. Markov,^{8,36},^{*} K. Joo,⁸ V.D. Burkert,³⁶ V.I. Mokeev,³⁶ L. C. Smith,⁴¹ M. Ungaro,³⁶ S. Adhikari,¹¹

```
Same data (E1E) 1.1 < W < 1.8 GeV
Access to second and third N<sup>*</sup> regions!
```

E1E run

- CLAS detector data 12/2002 1/2003
- Beam energy: 2.036 GeV
- Beam polarization: ~ 80%
- Target: Liquid Hydrogen, thickness 2 cm
- Number of triggers: ~ 1.5 billions

0.4 < Q² < 1 GeV² 1.1 < W < 1.8 GeV

Summary of particle ID

from N.Markov talk at CLAS Coll. - 16 November 2018

e π^{-} separation

Fiducial cuts

Proton identification

Final event selection

Polarized Structure Function $\sigma_{LT'}$

$$\frac{d^2 \sigma^h}{d\Omega_{\pi}^*} = \frac{p_{\pi}^*}{k_{\gamma}^*} [\sigma_0 + h\sqrt{2\epsilon_L(1-\epsilon)} \ \sigma_{LT'} \ \sin \ \theta_{\pi}^* \ \sin \ \phi_{\pi}^*]$$

$$A_{LT'} = \frac{d^2 \sigma^+ - d^2 \sigma^-}{d^2 \sigma^+ + d^2 \sigma^-} = \frac{\sqrt{2\epsilon_L(1-\epsilon)} \sigma_{LT'} \sin \theta_\pi^* \sin \phi_\pi^*}{\sigma_0}$$

We have unpolarized cross sections from the same data.

 $A_{LT'} = \frac{A_m}{P_e},$

Polarized Structure Function $\sigma_{LT'}$

Binning:

28 W-bins from 1.1 to 1.8 GeV, width = 25 MeV 2 Q²-bins [0.4-0.6] and [0.6-1.0] GeV² 10 Cos(θ)-bins [-1,1] width = 0.2 12 Φ -bins [0,360] width = 30°

W = 1.66 GeV 0.4<Q²<0.6 GeV²

 $\cos(\theta) = -0.9$

σ_{LT} , 0.4<Q²<0.6 GeV² green-MAID2007, black-UIM

σ_{LT} , 0.4<Q²<0.6 GeV² green-MAID2007, black-UIM

σ_{LT} , 0.4<Q²<0.6 GeV² green-MAID2007, black-UIM

11

σ_{LT} , 0.6<Q²<1.0 GeV² green-MAID2007, black-UIM

σ_{LT} , 0.6<Q²<1.0 GeV² green-MAID2007, black-UIM

σ_{LT} , 0.6<Q²<1.0 GeV² green-MAID2007, black-UIM

Next Steps and Conclusions

- ► LP analysis and overall check on the data
- The polarized structure function $\sigma_{LT'}$ was extracted from the CLAS E1E data in the kinematical region

 $0.4 < Q^2 < 1 \text{ GeV}^2$

1.1 < W < 1.8 GeV

The combined analysis of polarized and unpolarized data will give us information on electroexcitation amplitudes with focus on the second and third resonance regions.