Strong QCD from
Hadron StructureNov. 6 - 9, 2019Hadron StructureJefferson LabExperimentsNewport News, VA USA

Electromagnetic and transition form factors of the Baryon Decuplet

Hyun-Chul Kim

Department of Physics, Inha University Incheon, Korea Modern Understanding of Hadron structures

Traditional way of a hadron structure

Traditional way of studying structures of hadrons

Modern understanding of a baryon structure

Today's topic to discuss

State of the art of the nucleon tomography

Figure taken from Eur. Phys. J. A (2016) 52: 268

Modern understanding of a baryon structure

3D Nucleon Tomography

Transverse densities of Form factors

GPDs Nucleon Tomography Structure functions Parton distributions

Modern understanding of a baryon structure

Probes are unknown for Tensor form factors and the Energy-Momentum Tensor form factors!

Baryon as Nc quarks bound by the pion mean fields

Mean-Field Approximation

Simple picture of a mean-field approximation

Mean-field potential that is produced by all other particles.

- Nuclear shell models
- Ginzburg-Landau theory for superconductivity
- Quark potential models for baryons

Mean-Field Approximation

More theoretically defined mean fields

Given action, $S[\phi]$

 $\left.\frac{\delta S}{\delta \phi}\right|_{\phi=\phi_0} = 0$: Solution of this saddle-point equation ϕ_0

Key point: Ignore the quantum fluctuation.

How to understand the structure of Baryons, based on this pion mean field approach.

- * A baryon can be viewed as a state of Nc quarks bound by mesonic mean fields (E. Witten, NPB, 1979 & 1983).
 - Its mass is proportional to Nc, while its width is of order O(1).
 - Mesons are weakly interacting (Quantum fluctuations are suppressed by 1/Nc: O(1/Nc).

Meson mean-field approach (Chiral Quark-Soliton Model)

* Baryons as a state of Nc quarks bound by mesonic mean fields.

 $S_{\rm eff} = -N_c \mathrm{Tr} \ln \left(i \partial \!\!\!/ + i M U^{\gamma_5} + i \hat{m} \right)$

* Key point: Hedgehog Ansatz

$$\pi^{a}(\mathbf{r}) = \begin{cases} n^{a}F(r), n^{a} = x^{a}/r, & a = 1, 2, 3\\ 0, & a = 4, 5, 6, 7, 8. \end{cases}$$

 \rightarrow It breaks spontaneously $SU(3)_{flavor} \otimes O(3)_{space} \rightarrow SU(2)_{isospin+space}$

*Merits of the Chiral Quark-Soliton Model

It is directly related to nonperturbative QCD via the Instanton vacuum.

Natural scale of the model given by the instanton size: $ho pprox (600\,{
m MeV})^{-1}$

 Fully relativistic quantum-field theoretic model (we have a "QCD" vacuum): It explains almost all properties of the lowest-lying baryons.

 It describes the light & heavy baryons on an equal footing (Advantage of the mean-field approach).

 Basically, no free parameter to fit the experimental data. Cutoff parameter is fixed by the pion decay constant, and Dynamical quark mass (M=420 MeV) is fixed by the proton radius.

system is stabilized

A light baryon in pion mean fields

$$\langle J_B J_B^{\dagger} \rangle_0 \sim e^{-N_c E_{\rm val} T}$$

Presence of Nc quarks will polarize the vacuum or create mean fields.

A light baryon in pion mean fields

$$E_{\rm cl} = N_c E_{\rm val} + E_{\rm sea}$$

Classical Nucleon mass is described by the Nc valence quark energy and sea-quark energy.

An observable for the light baryon

EM Form factors of the Baryon decuplet

Traditional definition of form factors

$$\begin{split} \langle B(p',s)|e_B J^{\mu}(0)|B(p,s)\rangle &= -e_B \overline{u}^{\alpha}(p',s) \left[\gamma^{\mu} \left\{ F_1^B(q^2)\eta_{\alpha\beta} + F_3^B(q^2) \frac{q_{\alpha}q_{\beta}}{4M_B^2} \right\} \right. \\ &+ i \frac{\sigma^{\mu\nu}q_{\nu}}{2M_B} \left\{ F_2^B(q^2)\eta_{\alpha\beta} + F_4^B(q^2) \frac{q_{\alpha}q_{\beta}}{4M_B^2} \right\} \right] u^{\beta}(p,s), \end{split}$$

New Definition

Quark probabilities inside a nucleon

Transverse charge density

r

Why transverse charge densities?

I

2-D Fourier transform of the GPDs in impact-parameter space

EM Form factors of the baryon decuplet

 Matrix Elements of the EM current in terms of four independent form factors

$$\begin{split} \langle B(p',s)|J^{\mu}(0)|B(p,s)\rangle &= -\overline{u}^{\alpha}(p',s) \left[\gamma^{\mu} \left\{ F_{1}^{B}(q^{2})\eta_{\alpha\beta} + F_{3}^{B}(q^{2})\frac{q_{\alpha}q_{\beta}}{4M_{B}^{2}} \right\} \\ &+ i\frac{\sigma^{\mu\nu}q_{\nu}}{2M_{B}} \left\{ F_{2}^{B}(q^{2})\eta_{\alpha\beta} + F_{4}^{B}(q^{2})\frac{q_{\alpha}q_{\beta}}{4M_{B}^{2}} \right\} \right] u^{\beta}(p,s), \end{split}$$

Sachs-type form factors: Multipole form factors

$$\begin{split} G^B_{E0}(Q^2) &= \left(1 + \frac{2}{3}\tau\right) [F^B_1 - \tau F^B_2] - \frac{1}{3}\tau(1+\tau)[F^B_3 - \tau F^B_4], \\ G^B_{E2}(Q^2) &= [F^B_1 - \tau F^B_2] - \frac{1}{2}(1+\tau)[F^B_3 - \tau F^B_4], \\ G^B_{M1}(Q^2) &= \left(1 + \frac{4}{5}\tau\right) [F^B_1 + F^B_2] - \frac{2}{5}\tau(1+\tau)[F^B_3 + F^B_4], \\ G^B_{M3}(Q^2) &= [F^B_1 + F^B_2] - \frac{1}{2}(1+\tau)[F^B_3 + F^B_4] \\ \text{J.-Y. Kim & HChK, EPJC, 79:570 (2019) } \end{split}$$

EM Form factors of the baryon decuplet

Physical meanings of the multipole form factors

$$e_{B} = eG_{E0}^{B}(0) = eF_{1}^{B}(0),$$

$$\mu_{B} = \frac{e}{2M_{B}}G_{M1}^{B} = \frac{e}{2M_{B}}\left[e_{B} + F_{2}^{B}(0)\right],$$

$$Q_{B} = \frac{e}{M_{B}^{2}}G_{E2}^{B}(0) = \frac{e}{M_{B}^{2}}\left[e_{B} - \frac{1}{2}F_{3}^{B}(0)\right],$$

$$O_{B} = \frac{e}{M_{B}^{3}}G_{M3}^{B}(0) = \frac{e}{M_{B}^{3}}\left[e_{B} + F_{2}^{B}(0) - \frac{1}{2}(F_{3}^{B}(0) + F_{4}^{B}(0))\right]$$

EM Form factors of the baryon decuplet

Expressions for the multipole form factors

$$\begin{split} G_{E0}^{B}(Q^{2}) &= \int \frac{d\Omega_{q}}{4\pi} \langle B(p', 3/2) | J^{0}(0) | B(p, 3/2) \rangle, \\ G_{E2}^{B}(Q^{2}) &= -\int d\Omega_{q} \sqrt{\frac{5}{4\pi}} \frac{3}{2} \frac{1}{\tau} \langle B(p', 3/2) | Y_{20}^{*}(\Omega_{q}) J^{0}(0) | B(p, 3/2) \rangle, \\ G_{M1}^{B}(Q^{2}) &= \frac{3M_{B}}{4\pi} \int \frac{d\Omega_{q}}{i|q|^{2}} q^{i} \epsilon^{ik3} \langle B(p', 3/2) | J^{k}(0) | B(p, 3/2) \rangle, \\ G_{M3}^{B}(Q^{2}) &= -\frac{35M_{B}}{8} \sqrt{\frac{5}{\pi}} \int \frac{d\Omega_{q}}{i|q|^{2}\tau} q^{i} \epsilon^{ik3} \langle B(p', 3/2) | \left(Y_{20}^{*}(\Omega_{q}) + \sqrt{\frac{1}{5}} Y_{00}^{*}(\Omega_{q}) \right) J^{k}(0) | B(p, 3/2) \rangle \end{split}$$

- Note that in any chiral solitonic model M3 form factors turn out to vanish. It implies that M3 form factors must be tiny.
- » T. Ledwig & M. Vanderhaeghen, Phys.Rev. D79 (2009) 094025 in an SU(3) symmetric case within the same framework.

EO form factor of the Delta+

Lattice data: Alessandro et al.

EO form factor of the Omega-

Lattice data: Alessandro et al.

M1 form factor of the Delta+

Lattice data: Alessandro et al.

M1 form factor of the Omega-

Lattice data: Alessandro et al.

E2 form factor of the Delta+

Lattice data: Alessandro et al.

E2 form factor of the Omega-

Lattice data: Alessandro et al.

J.-Y. Kim & HChK, EPJC, 79:570 (2019)

EO form factor of the Delta+

Lattice data: Alessandro et al.

Lattice data: Alessandro et al.

M1 form factor of the Omega-

Lattice data: Alessandro et al.

E2 form factor of the Delta+

Lattice data: Alessandro et al.

Sizable effects from SU(3) symmetry breaking

E2 form factor of the Omega-

Lattice data: Alessandro et al.

J.-Y. Kim & HChK, EPJC, 79:570 (2019)

Comparison with the lattice data

EO form factors

Lattice data: Alessandro et al.

Comparison with the lattice data

M1 form factors

Lattice data: Alessandro et al.

Comparison with the lattice data

E2 form factors

Lattice data: Alessandro et al.

Multipole pattern in the transverse plane

Carlson & Vanderhaeghen, PRD 100 (2008) 032004

Transverse charge density

 \uparrow

$$\rho_{T\frac{3}{2}}^{\Delta}(\vec{b}) = \int_{0}^{\infty} \frac{dQ}{2\pi} Q[J_{0}(Qb)\frac{1}{4}(A_{\frac{3}{2}\frac{3}{2}} + 3A_{\frac{1}{2}\frac{1}{2}}) - \sin(\phi_{b} - \phi_{S})J_{1}(Qb)\frac{1}{4}(2\sqrt{3}A_{\frac{3}{2}\frac{1}{2}} + 3A_{\frac{1}{2}-\frac{1}{2}}) - \cos(2(\phi_{b} - \phi_{S}))J_{2}(Qb)\frac{\sqrt{3}}{2}A_{\frac{3}{2}-\frac{1}{2}} + \sin(3(\phi_{b} - \phi_{S}))J_{3}(Qb)\frac{1}{4}A_{\frac{3}{2}-\frac{3}{2}}]$$

Transverse spin of the Delta

 $\boldsymbol{S}_{\perp} = \cos\phi_S \hat{\boldsymbol{e}}_x + \sin\phi_S \hat{\boldsymbol{e}}_y$

Radial vector in the transverse plane

 $\boldsymbol{b} = b(\cos\phi_b \hat{e}_x + \sin\phi_b \hat{e}_y)$

Preliminary results (J.-Y. Kim & HChK)

Multipole pattern in the transverse plane

EM transition form factors of the decuplet

 (ω, \boldsymbol{q}) $(E_{\Delta}, \boldsymbol{0})$ $(E_N, -\boldsymbol{q})$

EM transition FFs provide information on how the Delta looks like.

 EM transition FFs are related to the VBB coupling constants through VDM & CFI.

Essential to understand a production mechanism of hadrons.

Carlson & Vanderhaeghen, PRD 100 (2008) 032004

Coulomb form factors

M1 form factors

E2 form factors

C2/M1

E2/M1

Gravitational Form factors of the pion & Nucleon

Gravitational form factors

 $\delta S = 0$ under Poincaré transform

$$\langle \pi^{a}(p')|T_{\mu\nu}(0)|\pi^{b}(p)\rangle = \frac{\delta^{ab}}{2} [(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_{1}(t) + 2P_{\mu}P_{\nu}\Theta_{2}(t)]$$

Gravitational form factors

$$2\delta^{ab}H_{\pi}^{I=0}(x,\xi,t) = \frac{1}{2}\int \frac{d\lambda}{2\pi} e^{ix\lambda(P\cdot n)} \langle \pi^{a}(p')|\bar{\psi}(-\lambda n/2)\dot{n}[-\lambda n/2,\lambda n/2]\psi(\lambda n/2)|\pi^{b}(p)\rangle$$

Gravitational or EMT form factors as the second Melin moments of the EM GPD

C

$$\int dx x H_{\pi}^{I=0}(x,\xi,t) = A_{2,0}(t) + 4\xi^2 A_{2,2}(t) \quad \Theta_1 = -4A_{2,2}^{I=0} \quad \Theta_2 = A_{2,0}^{I=0}$$

$$\langle \pi^{a}(p')|T_{\mu\nu}(0)|\pi^{b}(p)\rangle = \frac{\delta^{ab}}{2} [(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_{1}(t) + 2P_{\mu}P_{\nu}\Theta_{2}(t)]$$

- T^{00} : Mass form factor T^{i0} : Angular momentum
 - T^{ij} : Shear force and Pressure

Mechanics of a particle

Stability of a particle: von Laue condition

M.V. Polyakov & P. Schweitzer, Int.J.Mod.Phys. A33 (2018) 1830025.

Stability

Pion: The stability is guaranteed by the chiral symmetry and its spontaneous breakdown H.D. Son & HChK, PRD 90 (2014) 111901

$$\mathcal{P} = \frac{3M}{f_\pi^2 \bar{M}} (m \langle \bar{\psi}\psi \rangle + m_\pi^2 f_\pi^2) = 0$$

Nucleon: The stability is guaranteed by the balance between the core valence quarks and the sea quarks (XQSM).

EMT form factors of the pion

With effects of SU(3) symmetry breaking included

d1 form factors of heavy baryons

Summary & Outlook

Summary & Outlook

- In this talk, we have presented results of series of recent works on the EM form factors of the baryon decuplet.
- We briefly have discussed the gravitational form factors of the pion, nucleon, and heavy baryons.

*Pion mean-field approaches indeed work for the lowest-lying baryons.

Outlook

***** Theoretical Extension:

How to go beyond the mean-field approximation:

Meson-loop corrections (RPA-like)

Momentum-dependent dynamical quark mass (relatively easy)

How to introduce the quark confinement as a background field.

* Phenomenological Extension:

 Describing excited baryons with new symmetry (hedgehog symmetry): smaller groups than SU(6) × O(3).
 GPDs and TMDs for excited baryons?

Though this be madness, yet there is method in it.

Hamlet Act 2, Scene 2

by Shakespeare

Thank you very much for the attention!