The Modeling of Baryon and Meson DAs, and their Relevance for DVMP

Cédric Mezrag

CEA-Saclay, Irfu/DPhN

November $8^{\text {th }}, 2019$

In collaboration with:
J. Segovia, L. Chang, M. Ding and C.D. Roberts Phys.Lett. B783 (2018) 263-267

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^{N}

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^{N}
- Schematically a distribution amplitude φ is related to the LFWF through:

$$
\varphi(x) \propto \int \frac{\mathrm{d}^{2} k_{\perp}}{(2 \pi)^{2}} \Psi\left(x, k_{\perp}\right)
$$

Distribution amplitudes: definitions

$$
\langle 0| O^{\alpha, \cdots}\left(z_{1}^{-}, \ldots, z_{n}^{-}\right)|P, \lambda\rangle
$$

- Lightcone operator O of given number of quark and gluon fields

Distribution amplitudes: definitions

$$
\langle 0| O^{\alpha, \ldots}\left(z_{1}^{-}, \ldots, z_{n}^{-}\right)|P, \lambda\rangle=\sum_{j}^{N} \tau_{j}^{\alpha, \ldots} F_{j}\left(z_{i}\right)
$$

- Lightcone operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$

Distribution amplitudes: definitions

$$
\langle 0| O^{\alpha, \ldots}\left(z_{1}^{-}, \ldots, z_{n}^{-}\right)|P, \lambda\rangle=\sum_{j}^{N} \tau_{j}^{\alpha, \ldots} F_{j}\left(z_{i}\right)
$$

- Lightcone operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist

Distribution amplitudes: definitions

$$
\langle 0| O^{\alpha, \ldots}\left(z_{1}^{-}, \ldots, z_{n}^{-}\right)|P, \lambda\rangle=\sum_{j}^{N} \tau_{j}^{\alpha, \ldots} F_{j}\left(z_{i}\right)
$$

- Lightcone operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist
- Leading and higher twist contributions can be selected by adequate projections of O

Distribution amplitudes: definitions

$$
\langle 0| O^{\alpha, \ldots}\left(z_{1}^{-}, \ldots, z_{n}^{-}\right)|P, \lambda\rangle=\sum_{j}^{N} \tau_{j}^{\alpha, \ldots} F_{j}\left(z_{i}\right)
$$

- Lightcone operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist
- Leading and higher twist contributions can be selected by adequate projections of O

Both mesons and baryons can (in principle) have multiple independent leading twist DA, and higher-twist DA.

Mesons Distribution amplitudes

- pion case \rightarrow a single leading twist DA:

$$
\langle 0| \bar{\psi}(0) \gamma \cdot n \gamma_{5} \psi\left(z^{-}\right)|\pi ; p\rangle=f_{\pi} \int \mathrm{d} x e^{-i x p \cdot z} \varphi_{\pi}(x)
$$

A.V. Efremov and A.V. Radyushkin, Phys. Lett. B94 (1980) 245 G.P. Lepage and S.J. Brodsky, Phys. Rev. 022 (1980) 2157

- rho case \rightarrow two leading twist DAs:

$$
\begin{array}{r}
\langle 0| \bar{\psi}(0) \gamma \cdot n \psi\left(z^{-}\right)|\rho ; p, \lambda\rangle=e^{(\lambda)} \cdot n f_{\rho} m_{\rho} \int_{0}^{1} \mathrm{~d} x e^{-i x p \cdot z} \varphi_{\|}(x) \\
\langle 0| \bar{\psi}(0) \sigma_{\mu \nu} \psi\left(z^{-}\right)|\rho ; p, \lambda\rangle=i\left(e_{\mu}^{(\lambda)} p_{\nu}-e_{\nu}^{(\lambda)} p_{\mu}\right) f_{\rho}^{\perp} \int_{0}^{1} \mathrm{~d} x e^{-i x p \cdot z^{2}} \varphi_{\perp}(x) \\
\text { A. Ali et al., z.Phys. C63 (1994) 437-454 }
\end{array}
$$

Nucleon Distribution Amplitudes

- 3 bodies matrix element:

$$
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle
$$

Nucleon Distribution Amplitudes

- 3 bodies matrix element expanded at leading twist:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle=\frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)\right. \\
& \left.+\left(p p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]
\end{aligned}
$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

Nucleon Distribution Amplitudes

- 3 bodies matrix element expanded at leading twist:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle=\frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)\right. \\
& \left.+\left(\not p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]
\end{aligned}
$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

- Usually, one defines $\varphi=V-A$

Nucleon Distribution Amplitudes

- 3 bodies matrix element expanded at leading twist:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle=\frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)\right. \\
& \left.+\left(p p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]
\end{aligned}
$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

- Usually, one defines $\varphi=V-A$
- 3 bodies Fock space interpretation (leading twist):

$$
\begin{aligned}
&|P, \uparrow\rangle=\int \frac{[\mathrm{d} x]}{8 \sqrt{6 x_{1} x_{2} x_{3}}}|u u d\rangle \otimes\left[\varphi\left(x_{1}, x_{2}, x_{3}\right)|\uparrow \downarrow \uparrow\rangle\right. \\
&\left.+\varphi\left(x_{2}, x_{1}, x_{3}\right)|\downarrow \uparrow \uparrow\rangle-2 T\left(x_{1}, x_{2}, x_{3}\right)|\uparrow \uparrow \downarrow\rangle\right]
\end{aligned}
$$

Nucleon Distribution Amplitudes

- 3 bodies matrix element expanded at leading twist:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle=\frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)\right. \\
& \left.+\left(\not p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]
\end{aligned}
$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

- Usually, one defines $\varphi=V-A$
- 3 bodies Fock space interpretation (leading twist):

$$
\begin{aligned}
&|P, \uparrow\rangle=\int \frac{[\mathrm{d} x]}{8 \sqrt{6 x_{1} x_{2} x_{3}}}|u u d\rangle \otimes\left[\varphi\left(x_{1}, x_{2}, x_{3}\right)|\uparrow \downarrow \uparrow\rangle\right. \\
&\left.+\varphi\left(x_{2}, x_{1}, x_{3}\right)|\downarrow \uparrow \uparrow\rangle-2 T\left(x_{1}, x_{2}, x_{3}\right)|\uparrow \uparrow \downarrow\rangle\right]
\end{aligned}
$$

- Isospin symmetry:

$$
2 T\left(x_{1}, x_{2}, x_{3}\right)=\varphi\left(x_{1}, x_{3}, x_{2}\right)+\varphi\left(x_{2}, x_{3}, x_{1}\right)
$$

Evolution and Asymptotic results

The meson case

- DA are scale dependent objects, they obey Efremov-Radyushkin-Brodsky-Lepage (ERBL) evolution equations $\varphi(x) \rightarrow \varphi(x, \zeta)$
- Evolution equations known at least at NLO, and diagonalized at LO.
- the asymptotic limit is known
$\varphi_{A S}(x)=6 x(1-x)$

Evolution and Asymptotic results

The meson case

- DA are scale dependent objects, they obey Efremov-Radyushkin-Brodsky-Lepage (ERBL) evolution equations $\varphi(x) \rightarrow \varphi(x, \zeta)$
- Evolution equations known at least at NLO, and diagonalized at LO.
- the asymptotic limit is known

$$
\varphi_{A S}(x)=6 x(1-x)
$$

There is no reason to believe that the asymptotic DA is a good approximation of the DA at a typical scale of $\zeta=2 \mathrm{GeV}$.

Evolution and Asymptotic results

The Baryon Case

- Baryon DAs obey evolution equations (only LO case is known and is not diagonalised)

Evolution and Asymptotic results

The Baryon Case

- Baryon DAs obey evolution equations (only LO case is known and is not diagonalised)
- At large scale, they both yield the so-called asymptotic DA $\varphi_{\text {as }}=120 x_{1} x_{2} x_{3}$:

Evolution and Asymptotic results

The Baryon Case

- Baryon DAs obey evolution equations (only LO case is known and is not diagonalised)
- At large scale, they both yield the so-called asymptotic DA $\varphi_{\mathrm{as}}=120 x_{1} x_{2} x_{3}$:

Form Factors: Nucleon case

Form Factors: Nucleon case

S. Brodsky and G. Lepage, PRD 22, (1980)

Form Factors: Nucleon case

$\begin{array}{llllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 \\ & & \mathbf{U}\left(X_{1}\right)^{0.7} & 0.8 & 0.9\end{array}$

$$
\eta=0.5
$$

S. Brodsky and G. Lepage, PRD 22, (1980)

Form Factors: Nucleon case

S. Brodsky and G. Lepage, PRD 22, (1980)

Asymptotic DA and vanishing FF

When $Q^{2} \rightarrow \infty, \varphi \rightarrow \varphi_{\mathrm{as}}$ and become fully symmetric under permutations. One obtains:

$$
F_{p}^{1} \propto \int \frac{\left[\mathrm{~d} x_{i}\right]\left[\mathrm{d} y_{i}\right]}{Q^{4}} \varphi_{\mathrm{as}}\left(x_{i}\right) \varphi_{\mathrm{as}}\left(y_{i}\right)\left[\left(5 e_{u}+e_{d}\right) H_{1}\left(x_{i}, y_{i}\right)+\left(e_{u}+2 e_{d}\right) H_{2}\left(x_{i}, y_{i}\right)\right]
$$

Asymptotic DA and vanishing FF

When $Q^{2} \rightarrow \infty, \varphi \rightarrow \varphi_{\mathrm{as}}$ and become fully symmetric under permutations. One obtains:
$F_{p}^{1} \propto \int \frac{\left[\mathrm{~d} x_{i}\right]\left[\mathrm{d} y_{i}\right]}{Q^{4}} \varphi_{\mathrm{as}}\left(x_{i}\right) \varphi_{\mathrm{as}}\left(y_{i}\right)\left[\left(5 e_{u}+e_{d}\right) H_{1}\left(x_{i}, y_{i}\right)+\left(e_{u}+2 e_{d}\right) H_{2}\left(x_{i}, y_{i}\right)\right]$

- H_{1} contributions vanishes due to the integration procedure when $\varphi=\varphi_{\text {as }}$. This is also the case for the neutron.

Asymptotic DA and vanishing FF

When $Q^{2} \rightarrow \infty, \varphi \rightarrow \varphi_{\text {as }}$ and become fully symmetric under permutations. One obtains:
$F_{p}^{1} \propto \int \frac{\left[\mathrm{~d} x_{i}\right]\left[\mathrm{d} y_{i}\right]}{Q^{4}} \varphi_{\mathrm{as}}\left(x_{i}\right) \varphi_{\mathrm{as}}\left(y_{i}\right)\left[\left(5 e_{u}+e_{d}\right) H_{1}\left(x_{i}, y_{i}\right)+\left(e_{u}+2 e_{d}\right) H_{2}\left(x_{i}, y_{i}\right)\right]$

- H_{1} contributions vanishes due to the integration procedure when $\varphi=\varphi_{\text {as }}$. This is also the case for the neutron.
- H_{2} contribution vanishes in the proton case due to the specfic charge combination.

Asymptotic DA and vanishing FF

When $Q^{2} \rightarrow \infty, \varphi \rightarrow \varphi_{\text {as }}$ and become fully symmetric under permutations. One obtains:
$F_{p}^{1} \propto \int \frac{\left[\mathrm{~d} x_{i}\right]\left[\mathrm{d} y_{i}\right]}{Q^{4}} \varphi_{\mathrm{as}}\left(x_{i}\right) \varphi_{\mathrm{as}}\left(y_{i}\right)\left[\left(5 e_{u}+e_{d}\right) H_{1}\left(x_{i}, y_{i}\right)+\left(e_{u}+2 e_{d}\right) H_{2}\left(x_{i}, y_{i}\right)\right]$

- H_{1} contributions vanishes due to the integration procedure when $\varphi=\varphi_{\text {as }}$. This is also the case for the neutron.
- H_{2} contribution vanishes in the proton case due to the specfic charge combination.

Data available at large Q^{2} today are incompatible with $\varphi_{\text {as }}$

Asymptotic DA and vanishing FF

When $Q^{2} \rightarrow \infty, \varphi \rightarrow \varphi_{\text {as }}$ and become fully symmetric under permutations. One obtains:
$F_{p}^{1} \propto \int \frac{\left[\mathrm{~d} x_{i}\right]\left[\mathrm{d} y_{i}\right]}{Q^{4}} \varphi_{\mathrm{as}}\left(x_{i}\right) \varphi_{\mathrm{as}}\left(y_{i}\right)\left[\left(5 e_{u}+e_{d}\right) H_{1}\left(x_{i}, y_{i}\right)+\left(e_{u}+2 e_{d}\right) H_{2}\left(x_{i}, y_{i}\right)\right]$

- H_{1} contributions vanishes due to the integration procedure when $\varphi=\varphi_{\text {as }}$. This is also the case for the neutron.
- H_{2} contribution vanishes in the proton case due to the specfic charge combination.

Data available at large Q^{2} today are incompatible with $\varphi_{\text {as }}$

Caveat: Leading Order analysis only

Some previous studies of Baryon DA

- QCD Sum Rules
- V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246 (1984)
- Relativistic quark model
- Z. Dziembowski, PRD 37 (1988)
- Scalar diquark clustering
- Z. Dziembowski and J. Franklin, PRD 42 (1990)
- Phenomenological fit
- J. Bolz and P. Kroll, Z. Phys. A 356 (1996)
- Lightcone quark model
- B. Pasquini et al., PRD 80 (2009)
- Lightcone sum rules
- I. Anikin et al., PRD 88 (2013)
- Lattice Mellin moment computation
- G. Bali et al., EPJ. A55 (2019)

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.
- It predicts the existence of strong diquarks correlations inside the nucleon.

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.
- It predicts the existence of strong diquarks correlations inside the nucleon.

- Mostly two types of diquark are dynamically generated by the Faddeev equation:
- Scalar diquarks,
- Axial-Vector (AV) diquarks.

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.
- It predicts the existence of strong diquarks correlations inside the nucleon.

- Mostly two types of diquark are dynamically generated by the Faddeev equation:
- Scalar diquarks,
- Axial-Vector (AV) diquarks.
- Can we understand the nucleon structure in terms of quark-diquarks correlations?

Faddeev WF Model

- Algebraic parametrisation inspired by the results obtained from DSEs and Faddeev equations.
- It is based on Nakanishi representation, which is proved to be a good parametrisation of Green functions at all order of perturbation theory.
- We also assume the dynamical diquark correlations, both scalar and AV , and compare in the end with Lattice QCD results.
- This is an exploratory work.

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C \phi u_{\downarrow}^{j}\left(z_{2}\right)\right) \not p d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

Braun et al., Nucl.Phys. B589 (2000)

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C \phi u_{\downarrow}^{j}\left(z_{2}\right)\right) \phi d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \underset{\text { Braun et al., Nucl.P }}{\rightarrow} \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

- We can apply it on the wave function:

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\begin{aligned}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C h u_{\downarrow}^{j}\left(z_{2}\right)\right) \not \hbar d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle & \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right) \\
& \text { Braun et al., Nucl.Phys. B589 (2000) }
\end{aligned}
$$

- We can apply it on the wave function:

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C h u_{\downarrow}^{j}\left(z_{2}\right)\right) \not n d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:

- The operator then selects the relevant component of the wave function.

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C h u_{\downarrow}^{j}\left(z_{2}\right)\right) \not h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \underset{\text { Braun et al. Nucl.P }}{\rightarrow} \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:

- The operator then selects the relevant component of the wave function.

Nucleon Distribution Amplitude

- Operator point of view for every DA (and at every twist):

$$
\begin{aligned}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C h u_{\downarrow}^{j}\left(z_{2}\right)\right) \not h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle & \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right) \\
& \text { Braun et al., Nucl.Phys. B589 (2000) }
\end{aligned}
$$

- We can apply it on the wave function:
- The operator then selects the relevant component of the wave function.
- Our ingredients are:
- Perturbative-like quark and diquark propagator
- Nakanishi based diquark Bethe-Salpeter-like amplitude (green disks)
- Nakanishi based quark-diquark amplitude (dark blue ellipses)

Scalar Diquark DA

$$
\phi(x) \propto 1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}
$$

Scalar diquark

Scalar Diquark DA

$$
\phi(x) \propto 1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}
$$

Scalar diquark

Pion

Pion figure from L. Chang et al., PRL 110 (2013)

Scalar Diquark DA

$$
\phi(x) \propto 1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}
$$

Scalar diquark

Pion

Pion figure from L. Chang et al., PRL 110 (2013)

- This results provide a broad and concave meson DA parametrisation
- The endpoint behaviour remains linear

Comparison with the ρ meson

AV diquark

ρ meson

ρ figure from F. Gao et al., PRD 90 (2014)

Comparison with the ρ meson

AV diquark

ρ meson

ρ figure from F. Gao et al., PRD 90 (2014)

- Same "shape ordering" $\rightarrow \phi_{\perp}$ is flatter in both cases.
- Farther apart compared to the ρ meson case.

Mellin Moments

- We do not compute the PDA directly but Mellin moments of it:

$$
\left\langle x_{1}^{m} x_{2}^{n}\right\rangle=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{1}^{m} x_{2}^{n} \varphi\left(x_{1}, x_{2}, 1-x_{1}-x_{2}\right)
$$

- For a general moment $\left\langle x_{1}^{m} x_{2}^{n}\right\rangle$, we change the variable in such a way to write down our moments as:

$$
\left\langle x_{1}^{m} x_{2}^{n}\right\rangle=\int_{0}^{1} \mathrm{~d} \alpha \int_{0}^{1-\alpha} \mathrm{d} \beta \alpha^{m} \beta^{n} f(\alpha, \beta)
$$

- f is a complicated function involving the integration on 6 parameters
- Uniqueness of the Mellin moments of continuous functions allows us to identify f and φ

Results

Scalar diquark Only

Nucleon DA

Asymptotic DA

- Typical symmetry in the pure scalar case
- Results evolved from 0.51 to 2 GeV with both scalar and AV diquark
- Nucleon DA is skewed compared to the asymptotic one
- It is also broader than the asymptotic results
- These properties are consequences of our quark-diquark picture
C.Mezrag et al., Phys.Lett. B783 (2018) 263-267

Comparison with lattice

$$
<x_{i}>_{\varphi}=\int \mathcal{D} x x_{i} \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

Lattice data from V.Braun et al, PRD 89 (2014)
G. Bali et al., JHEP 201602
G. Bali et al., EPJ. A55 (2019)

Comparison with lattice

$$
<x_{i}>_{\varphi}=\int \mathcal{D} x x_{i} \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

Lattice data from V.Braun et al, PRD 89 (2014)
G. Bali et al., JHEP 201602
G. Bali et al., EPJ. A55 (2019)

Comparison with lattice

$$
<x_{i}>_{\varphi}=\int \mathcal{D} x x_{i} \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

- Scalar+AV
--- Asymptotic Value
- Lattice 2019
- Lattice 2016
- Lattice 2014
- Scalar Only
- Evolved Results

Lattice data from V.Braun et al, PRD 89 (2014)
G. Bali et al., JHEP 201602
G. Bali et al., EPJ. A55 (2019)

Summary so far

Achievements

- DSE compatible framework for Baryon PDAs.
- Based on the Nakanishi representation.
- First results from exploratory work (2017).

Work in progress/future work

- Improvement of the Nakanishi Ansätze.
- Calculation of the Dirac form factor
- Higher-twist PDA (completely unknown)

DVMP and Distribution Amplitudes

DVMP factorisation at LO

$$
\begin{array}{r}
\mathcal{F}^{q}\left(\xi, t, Q^{2}\right) \propto \frac{\alpha_{s}\left(\mu_{R}\right)}{Q} \int_{-1}^{1} \mathrm{~d} x \frac{F^{q}\left(x, \xi, t, \mu_{F}^{2}\right)}{\xi-x-i \epsilon} \int_{0}^{1} \mathrm{~d} z \frac{\varphi\left(z, \mu_{\varphi}\right)}{(1-z)} \\
\text { see e.g. D. Mueller et al. Nucl.Phys. B884 (2014) 438-546 }
\end{array}
$$

- DVMP amplitude depends on the meson DA

DVMP factorisation at LO

$$
\begin{array}{r}
\mathcal{F}^{q}\left(\xi, t, Q^{2}\right) \propto \frac{\alpha_{s}\left(\mu_{R}\right)}{Q} \int_{-1}^{1} \mathrm{~d} x \frac{F^{q}\left(x, \xi, t, \mu_{F}^{2}\right)}{\xi-x-i \epsilon} \int_{0}^{1} \mathrm{~d} z \frac{\varphi\left(z, \mu_{\varphi}\right)}{(1-z)} \\
\text { see e.g. D. Mueller et al. Nucl.Phys. B884 (2014) 438-546 }
\end{array}
$$

- DVMP amplitude depends on the meson DA
- At LO, the x and z convolutions are fully factorised
- The DA contributes to the absolute normalisation

DVMP factorisation at LO

$$
\begin{array}{r}
\mathcal{F}^{q}\left(\xi, t, Q^{2}\right) \propto \frac{\alpha_{s}\left(\mu_{R}\right)}{Q} \int_{-1}^{1} \mathrm{~d} x \frac{F^{q}\left(x, \xi, t, \mu_{F}^{2}\right)}{\xi-x-i \epsilon} \int_{0}^{1} \mathrm{~d} z \frac{\varphi\left(z, \mu_{\varphi}\right)}{(1-z)} \\
\text { see e.g. D. Mueller et al. Nucl.Phys. B884 (2014) 438-546 }
\end{array}
$$

- DVMP amplitude depends on the meson DA
- At LO, the x and z convolutions are fully factorised
- The DA contributes to the absolute normalisation
- At NLO the situation is more complex, contributions from DA and GPDs are not fully separated anymore.

DVMP factorisation at LO

$$
\begin{array}{r}
\mathcal{F}^{q}\left(\xi, t, Q^{2}\right) \propto \frac{\alpha_{s}\left(\mu_{R}\right)}{Q} \int_{-1}^{1} \mathrm{~d} x \frac{F^{q}\left(x, \xi, t, \mu_{F}^{2}\right)}{\xi-x-i \epsilon} \int_{0}^{1} \mathrm{~d} z \frac{\varphi\left(z, \mu_{\varphi}\right)}{(1-z)} \\
\text { see e.g. D. Mueller et al. Nucl.Phys. B884 (2014) 438-546 }
\end{array}
$$

- DVMP amplitude depends on the meson DA
- At LO, the x and z convolutions are fully factorised
- The DA contributes to the absolute normalisation
- At NLO the situation is more complex, contributions from DA and GPDs are not fully separated anymore.

What is the impact of various models on DVMP?

Models of Pion DA

- Asymptotic DA : $\varphi_{\text {AS }}=6 x(1-x)$
- Square-root DA : $\varphi_{S R}=\frac{8}{\pi} \sqrt{x(1-x)}$
A. Radyushkin, Nucl.Phys. A532 (1991) 141-154 S. Brodsky et al. Int.J.Mod.Phys.Conf.Ser. 39 (2015) 1560081
- Fits on Lattice second moment of DA
V. Braun et al. Phys.Rev. D92 (2015) no.1, 014504
- Power model : $\varphi_{p}(x) \propto(x(1-x))^{\nu}$
J. Segovia et al., Phys.Lett. B731 (2014) 13-18
- Log model : $\varphi_{\ln }(x) \propto 1-\frac{\ln [1+\kappa x(1-x)]}{\kappa x(1-x)}$
C. Mezrag et al., Phys.Lett. B783 (2018) 263-267

Models of Pion DA

- Asymptotic DA : $\varphi_{\text {AS }}=6 x(1-x)$
- Square-root DA : $\varphi_{S R}=\frac{8}{\pi} \sqrt{x(1-x)}$
A. Radyushkin, Nucl.Phys. A532 (1991) 141-154
S. Brodsky et al. Int.J.Mod.Phys.Conf.Ser. 39 (2015) 1560081
- Fits on Lattice second moment of DA
V. Braun et al. Phys.Rev. D92 (2015) no.1, 014504
- Power model : $\varphi_{p}(x) \propto(x(1-x))^{\nu}$
J. Segovia et al., Phys.Lett. B731 (2014) 13-18
- Log model : $\varphi_{\ln }(x) \propto 1-\frac{\ln [1+\kappa x(1-x)]}{\kappa x(1-x)}$
C. Mezrag et al., Phys.Lett. B783 (2018) 263-267

Bottom line

- 4 different concave pion DA models
- 2 tuned to Lattice QCD results of the second moment

$n=-1$ Mellin Moment

	$x(1-x)$	$\varphi_{\ln }(x)$	$(x(1-x))^{\nu}$	$\sqrt{x(1-x)}$
$\left\langle x^{-1}\right\rangle$	3	3.38	3.61	4
$\frac{\left\langle x^{-1}\right\rangle}{\left\langle x^{-1}\right\rangle_{\text {As }}}$	1	1.13	1.20	1.33

$$
\left\langle x^{-1}\right\rangle=\int_{0}^{1} \mathrm{~d} x \frac{\varphi(x)}{1-x}
$$

--- Asymptotic

$n=-1$ Mellin Moment

	$x(1-x)$	$\varphi_{\ln }(x)$	$(x(1-x))^{\nu}$	$\sqrt{x(1-x)}$
$\left\langle x^{-1}\right\rangle$	3	3.38	3.61	4
$\frac{\left\langle x^{-1}\right\rangle}{\left\langle x^{-1}\right\rangle_{\text {As }}}$	1	1.13	1.20	1.33

Additionnal complication : evolution and scale setting

Form Factors

$$
\begin{gathered}
Q^{2} F\left(Q^{2}\right)=\mathcal{N} \int\left[d x_{i}\right]\left[d y_{i}\right] \varphi\left(x, \zeta_{x}^{2}\right) T\left(x, y, Q^{2}, \zeta_{x}^{2}, \zeta_{y}^{2}\right) \varphi\left(y, \zeta_{y}^{2}\right)
\end{gathered}
$$

Form Factors

$$
Q^{2} F\left(Q^{2}\right)=\mathcal{N} \int\left[\mathrm{d} x_{i}\right]\left[\mathrm{d} y_{i}\right] \varphi\left(x, \zeta_{x}^{2}\right) T\left(x, y, Q^{2}, \zeta_{x}^{2}, \zeta_{y}^{2}\right) \varphi\left(y, \zeta_{y}^{2}\right)
$$

- LO Kernel and NLO kernels are known
- $T_{0} \propto \frac{\alpha s\left(\mu_{R}^{2}\right)}{(1-x)(1-y)}$
- $T_{1} \propto \frac{\alpha_{s}^{2}\left(\mu_{R}^{2}\right)}{(1-x)(1-y)}\left(f_{U V}\left(\mu_{R}^{2}\right)+f_{I R}\left(\zeta^{2}\right)+f_{\text {finite }}\right)$

Pion FF

- The UV scale dependent term behaves like:

$$
f_{U V}\left(\mu_{R}^{2}\right) \propto \beta_{0}\left(5 / 3-\ln ((1-x)(1-y))+\ln \left(\frac{\mu_{R}^{2}}{Q^{2}}\right)\right)
$$

- Here I take two examples:
- the standard choice of $\zeta_{x}^{2}=\zeta_{y}^{2}=\mu^{2}=Q^{2} / 4$
- the regularised BLM-PMC scale $\zeta_{x}^{2}=\zeta_{y}^{2}=\mu^{2}=e^{-5 / 3} Q^{2} / 4$

> S. Brodsky et al., PRD 28228 (1983)
> S. Brodsky and L. Di Giustino, PRD 86085026 (2011)

- Take the PDA model coming from the scalar diquark:

$$
\varphi_{\ln }(x) \propto 1-\frac{\ln [1+\kappa x(1-x)]}{\kappa x(1-x)}
$$

κ is fitted to the lattice Mellin Moment

Pion FF

Pion FF

- The UV scale dependent term behaves like:

$$
f_{U V}\left(\mu_{R}^{2}\right) \propto \beta_{0}\left(5 / 3-\ln ((1-x)(1-y))+\ln \left(\frac{\mu_{R}^{2}}{Q^{2}}\right)\right)
$$

- Here I take two examples:
- the standard choice of $\zeta_{x}^{2}=\zeta_{y}^{2}=\mu^{2}=Q^{2} / 4$
- the regularised BLM-PMC scale $\zeta_{x}^{2}=\zeta_{y}^{2}=\mu^{2}=e^{-5 / 3} Q^{2} / 4$

> S. Brodsky et al., PRD 28228 (1983)
> S. Brodsky and L. Di Giustino, PRD 86085026 (2011)

- BLM scale reduces significantly the impact of the NLO corrections and increase dramatically the LO one.
- Future large Q^{2} data coming from JLab 12 and the EIC might shed light on the pion DA.

DVMP and PARTONS

- PARTONS \rightarrow open-source software for GPDs phenomenology
- Flexible code architecture allowing GPDs studies in a broad range of assumptions.
- Discussions for the development on the DVMP branch have started (Kemal Tezgin and Pawel Sznajder). We would like :
- LO and NLO perturbative kernel
- Various models of DA
- Evolution code for the leading twist DA

DVMP and PARTONS

http://partons.cea.fr

- PARTONS \rightarrow open-source software for GPDs phenomenology
- Flexible code architecture allowing GPDs studies in a broad range of assumptions.
- Discussions for the development on the DVMP branch have started (Kemal Tezgin and Pawel Sznajder). We would like :
- LO and NLO perturbative kernel
- Various models of DA
- Evolution code for the leading twist DA
- PARTONS \rightarrow first quantitative studies of the impact of the meson DA at LO and NLO on GPD extraction
- PARTONS \rightarrow comparison with different non-perturbative predictions of the meson DA and the GPDs

Baryon DA and DVMP

figure from K. Park et al., Phys. Lett. B 780 340-345 (2018)

Summary and Conclusion

Modelling of Distribution Amplitudes

- A formalism able to handle the computation of Baryon DA
- Rely on diquark correlation with a spatial extension
- Impact of the nature and structure of the diquarks on the nucleon DA
- Good comparison with lattice-QCD results
- Improvements are in progress

DVMP and DA

- DVMP is very sensitive to the shape of DA
- Non-perturbative approaches help but still no definitive solution
- DVMP studies may need to be coupled to other processes sensitive to GPDs (DVCS) and DA (Form Factors?)
- PARTONS will be the good tool to exploit DVMP data

Thank you for your attention

Back up slides

Nakanishi Representation

At all order of perturbation theory, one can write (Euclidean space):

$$
\Gamma(k, P)=\mathcal{N} \int_{0}^{\infty} \mathrm{d} \gamma \int_{-1}^{1} \mathrm{~d} z \frac{\rho_{n}(\gamma, z)}{\left(\gamma+\left(k+\frac{z}{2} P\right)^{2}\right)^{n}}
$$

We use a "simpler" version of the latter as follow:

$$
\tilde{\Gamma}(q, P)=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\rho_{n}(z)}{\left(\Lambda^{2}+\left(q+\frac{z}{2} P\right)^{2}\right)^{n}}
$$

