Study of Chiral-Odd GPDs using Deeply Virtual Pseudoscalar Meson Electroproduction measurements at Jefferson Lab

> Andrey Kim University of Connecticut

Strong QCD from Hardon Structure Experiments Workshop November 07, 2019, Newport News, Virginia

Generalized Parton Distributions (GPDs)

Chiral even GPDs:

 DVCS on unpolarized and polarized targets with polarized beam by HERMES, JLAB and COMPASS

Chiral-odd GPD results:

- Deeply virtual meson production
- Lattice QCD by Göckeler et al

GPDs in deeply virtual exclusive reactions

•
$$\langle F \rangle = \sum_{\lambda} \int_{-1}^{1} dx \mathcal{H}_{0\lambda,\mu\lambda} \left(x, \xi, Q^2, t \right) F \left(x, \xi, t \right)$$

Generalized Form Factor (GFF) $\langle F \rangle$ is a convolution of hard subprocess with GPD *F*

- 4 parton helicity conserving (chiral even) GPDs: H, \tilde{H} , E, \tilde{E}
- 4 parton helicity flip (chiral odd) GPDs: H_T , \tilde{H}_T , E_T , \tilde{E}_T
- functions of three kinematic variables: x, ξ and t

GPDs in deeply virtual exclusive reactions

Goldstein-Gonzalez-Liuti model

PHYSICAL REVIEW D 84. 034007 (2011) Flexible parametrization of generalized parton distributions from deeply virtual Compton scattering observables

Gary R. Goldstein,1* J. Osvaldo Gonzalez Hernandez,2† and Simonetta Liuti2* recursive fit by imposing ¹Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA ²Department of Physics, University of Virginia, Charlottesville, Virginia 22901, USA (Received 16 February 2011; published 5 August 2011)

DIS experimental results

Chiral-even GPDs

parametrization

constraints from:

elastic form factors

Evaluation of chiral-odd GPDs through the linear relations with $\widetilde{H}_T = -\frac{1}{F} \left(E - \frac{\zeta}{2} \widetilde{E} \right)$ chiral even GPDs within GGL model: $E_T = \frac{(1-\zeta/2)^2}{1-\zeta} \left[E - 2\widetilde{H}_T - (\frac{\zeta/2}{1-\zeta/2})^2 \widetilde{E} \right]$ $\widetilde{E}_T = rac{\zeta/2(1-\zeta/2)}{1-\zeta} \left[E - 2\widetilde{H}_T - \widetilde{E} ight]$ $H_T = \frac{H + \widetilde{H}}{2} - \frac{\zeta^2/4}{1 - \zeta} \frac{E + \widetilde{E}}{2} - \frac{\zeta^2/4}{(1 - \zeta/2)(1 - \zeta)} E_T + \frac{\zeta/4(1 - \zeta/2)}{1 - \zeta} \widetilde{E}_T - \frac{t_0 - t}{4M^2} \frac{1}{F} \left(E - \frac{\zeta}{2} \widetilde{E} \right)$

DVCS data

Goloskokov-Kroll model

Eur. Phys. J. A (2011) 47: 112 DOI 10.1140/epja/i2011-11112-6

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article – Theoretical Physics

Transversity in hard exclusive electroproduction of pseudoscalar mesons

S.V. Goloskokov^{1,a} and P. Kroll^{2,3,b}

$$\begin{split} & \mathsf{UNPOLARIZED STRUCTURE FUNCTIONS:} \\ \sigma_L &\sim \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \mathrm{Re} \left[\langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\} \\ \sigma_T &\sim \left[\left(1 - \xi^2\right) \left| \langle H_T \rangle \right|^2 - \frac{t}{8m^2} \left| \langle E_T \rangle \right|^2 \right] \\ \sigma_{TT} &\sim \left| \langle \bar{E}_T \rangle \right|^2 \\ \\ & \mathsf{POLARIZED OBSERVABLES:} \\ A_{LU}^{\sin \phi} \sigma_0 &\sim \mathrm{Im} \left[\langle H_T \rangle^* \langle \tilde{E} \rangle \right] \\ A_{UL}^{\sin \phi} \sigma_0 &\sim \mathrm{Im} \left[\langle \bar{E}_T \rangle^* \langle \tilde{H} \rangle + \xi \langle H_T \rangle^* \langle \tilde{E} \rangle \right] \\ & A_{LL}^{\cos 0\phi} \sigma_0 &\sim |\langle H_T \rangle|^2 \\ & A_{LL}^{\cos \phi} \sigma_0 &\sim \mathrm{Re} \left[\langle \bar{E}_T \rangle^* \langle \tilde{H} \rangle + \xi \langle H_T \rangle^* \langle \tilde{E} \rangle \right] \end{split}$$

Constraining chiral-odd GPDs with JLab π^0 and η data

CLAS6 π^0 and η on proton:

- π^0 : σ_0 , σ_{TT} , σ_{LT} at 95 $\{Q^2, x_B, -t\}$ kinematic bins, 17 $\{Q^2, x_B\}$ bins
- η : σ_0 , σ_{TT} , σ_{LT} at 68 $\{Q^2, x_B, -t\}$ kinematic bins, 16 $\{Q^2, x_B\}$ bins

Hall A π^0 on proton and neutron:

- π^0 on proton: σ_T , σ_L , σ_{TT} , σ_{IT} at 14 { $Q^2, x_B, -t$ } kinematic bins, 2 $\{Q^2, x_B\}$ bins
- π^0 on neutron: σ_T , σ_I , σ_{TT} , σ_{LT} at 4 { $Q^2, x_B, -t$ } kinematic bins, 1 { Q^2, x_B } bins

H_T GPDs for *u* and *d* quarks 0 -0.1 (GeV/c) -0.1 -0.1 (GeV/c)

\bar{E}_{τ} GPDs for *u* and *d* quarks

π^0/η structure functions from CLAS

PRL109:112001 (2012) I. Bedlinskiy et al. (CLAS collaboration)

Rosenbluth separation of σ_T and σ_L at Hall A

 σ_{τ} (red circles) and σ_{t} (blue triangle) for Q²=1.75 GeV² x_R=0.36 GeV. 1200 1000 800 600 F Q²=1.75 GeV² 400 200 -200F 400 F 0.02 0.04 0.06 0.08 0.14 tmin-t (GeV2)

- Experimental **proof** that the transverse π^0 cross section is dominant!
- It opens the direct way to study the transversity GPDs in pseudoscalar exclusive production

Hall A collaboration, PRL 117: 262001 (2016)

π^0 productions on proton and neutron at Hall A

Spin asymmetry variables

- Large number of single and double spin asymmetries were measured over wide kinematic range
- Asymmetries are harder to interpret since they involve convolutions of chiral even and chiral odd GPDs

Roadmap: from 6 GeV to 12 GeV

- Early results (2001) from nondedicated experiment with CLAS (DVCS target spin asymmetry)
- First round of dedicated experiments in Halls A/B at JLab 2004/2005
- Second round of dedicated experiments 2008/2010
- Strong exclusive program at 12 GeV, CLAS12 first experiment data is under analysis

CLAS12 First Experiment

Forward Detector (FD) TORUS magnet HT Cherenkov Counter Drift chamber system LT Cherenkov Counter Forward ToF System Pre-shower calorimeter E.M. calorimeter Forward Tagger RICH detector

Central Detector (CD) Solenoid magnet Silicon Vertex Tracker Central Time-of-Flight Central Neutron Det. MicroWegas

Beamline - Photon Tagger - Shielding - Polarized Targets

- CEBAF Large Acceptance Spectrometer
- 10.6 GeV longitudinally polarized electron beam
- 85% average polarization
- Liquid hydrogen target
- First CLAS experiment since 12 GeV Upgrade
- The analysis uses 3% of approved beam time

Exclusivity and kinematic coverage

Beam spin asymmetry

$$BSA = \frac{1}{P_b} \frac{N^+ - N^-}{N^+ + N^-}$$

where $P_b = 85\%$ is an average beam polarization

$$BSA = \sqrt{2\epsilon(1-\epsilon)} \frac{\sigma_{LT'}}{\sigma_0}$$

• Statistically significant beam spin asymmetry was observed

$\sigma_{LT'}/\sigma_0$ in Q^2, x_B bins

• The preliminary results are compatible with previous measurements

What can we learn about the nucleon structure from chiral-odd GPDs?

- \bar{E}_T is related to the distortion of the polarized quark distribution in the transverse plane for an unpolarized nucleon
- H_T is related to transversity PDF h_1^q and tensor charge

PRL98, 222001, Gockeler (2007)

Andrey Kim (UCONN)

Transversity GPDs at JLab

M. Diehl, Ph. Hagler Eur.Phys.J.C44:87-101,2005

Andrey Kim (UCONN)

Transversity GPDs at JLab

Polarized Quarks in Unpolarized Proton

Summary

- The 6 and 12 GeV experimental data provide rich constraints for chiral-odd GPDs models and parameterizations and access the distributions of polarized quarks in the nucleon
- The combined π^0 and η electroproduction on proton from CLAS, as well as data on proton and neutron from Hall A, allow the insight into the flavor decomposition of transversity GPDs
- \bullet CLAS12 preliminary results indicate a promising future for Deeply Virtual π^0 Electroproduction measurements
- 10.6 GeV electron beam extend our reach to the higher kinematic regions