Strong QCD from Hadron Structure Experiments

Nov. 6 - 9, 2019 **Jefferson Lab Newport News, VA USA**

> This workshop will focus on the properties of hadrons and nuclei, and their emergence from Strong QCD. The goal is to explore new horizons in the structure of ground and excited hadrons, 3-D femto-imaging, and spectroscopy.

Local Organizing Committee: V.I. Mokeev (Chair), Jefferson Lab D.S. Carman, Jefferson Lab J-P. Chen, Jefferson Lab L. Elouadrhiri, Jefferson Lab

OHIO

K. Joo, University of Connecticut D.G. Richards, Jefferson Lab C.D. Roberts, Argonne National Lab

Topics:

- 1-D and 3-D structure of ground/excited hadrons and atomic nuclei;
- Mass, momentum, and pressure distributions in hadrons:
- Hadron spectroscopy and new hadron states;
- · QCD-based frameworks for the description of hadron spectroscopy and structure;
- Science opportunities at an Electron-Ion Collider

cea

HE2

GOETHE

UNIVERSITÄ

Relating **TMD** phenomenology to QCD

Marco Radici INFN - Pavia

Istituto Nazionale di Fisica Nucleare

European Research Council

THE PROTON IN 3D

https://www.jlab.org/conference/QCD2019

A "millennium problem" ...

QCD is the most complex part of the Standard Model

how do macroscopic properties of Nucleons (mass, size, spin..), of its resonances, of atomic nuclei, emerge ?

A "millennium problem" ...

QCD is the most complex part of the Standard Model

Nucleon: 3 valence quarks

highly nonlinear dynamics of an infinite many-body system

how do macroscopic properties of Nucleons (mass, size, spin..), of its resonances, of atomic nuclei, emerge ?

2

understanding **confinement** \rightarrow understanding every-day world

If you don't understand it, firstly you map it...

Where are partons ?

How do they move ?

If you don't understand it, firstly you map it...

If you don't understand it, firstly you map it...

Entering the era of precision studies for TMDs

CERN EW Working Group, 10-14-2019

From 1D map ...

from PDF (x) 1D map of internal motion

From 1D map... to 3D map

at leading twist

* forbidden by Parity invariance

Mulders & Tangerman, N.P. **B461** (96) Boer & Mulders, P.R. D**57** (98)

to TMD (x,k_T) 3D map of internal motion

A wealth of information !

3D maps of

- partonic quantum correlations: spin-spin, spin-momentum (orbit)
- quantum correlations between partonic motion and macroscopic nucleon properties (spin)
- partonic orbital motion (most TMDs vanish with no Lq)
- color-gauge invariance and time-reversal symmetry of QCD

A wealth of information !

quark **Quark polarization** Unpolarized Longitudinally Polarized **Transversely Polarized** nucleon (U) (L) **(T)** $f_1 = \mathbf{\bullet}$ $h_1^\perp = \textcircled{\bullet}$ - \bigstar U * Nucleon Polarization $h_{1L}^{\perp} = \bigcirc - \bigcirc$ $g_1 = \bullet - \bullet +$ * L $h_1 = (\mathbf{1}$ T $f_{1T}^{\perp} = \stackrel{\bullet}{\bullet}$ - $\begin{array}{c} \bullet \\ \bullet \end{array}$ - $\begin{array}{c} \bullet \\ \bullet \end{array}$ $h_{1T}^{\perp} = (\nearrow)$

> **Quark polarization Transversely Polarized** Unpolarized Longitudinally Polarized (U) (L) f^{\perp} g^{\perp} U Nucleon Polarization f_L^{\perp} g_L^{\perp} h_L, e_L L h_T, e_T f_T, f_T^{\perp} g_T, g_T^{\perp} Т h_T^{\perp}, e_T^{\perp}

at leading twist

forbidden by Parity invariance

at subleading twist

(T)

h, e

more quark-gluon correlations

but no factorization theorem (yet)

although conjecture for low-q_T factorized formula that recovers collinear known result at high-q_T

Bacchetta et al., P.L. B797 (19) 134850 arXiv:1906.07037

TMD factorization and universality

naïve T-odd TMD distributions

Buffing, Mukherjee, Mulders, P.R. D86 (12)

TMD factorization and universality

Hadron-in-jet hybrid framework

$$f_1^q(x, \boldsymbol{b}_T; \boldsymbol{Q}^2) = \sum_i \left(C_{q/i} \otimes f_1^i \right) (x, b_*; \mu_b) \, e^{S(b_*; \mu_b, Q)} \, e^{g_K(b_T) \log \frac{Q}{Q_0}} \, f_{\mathrm{NP}}^q(x, b_T; \boldsymbol{Q}_0^2)$$

Perturbative accuracy in resummation

$$f_1^q(x, b_T; Q^2) = \sum_i C_{q/i} \otimes f_1^i) (x, b_*; \mu_b) e^{S(b_*; \mu_b, Q)} \dots$$

order	Wilson coeffs.	Sudakov form factor				
LL	$ ilde{C}^0$	$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right)$				
NLL	$ ilde{C}^0$	$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right) \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right)$				
NLL'	$ ilde{C}^0 - lpha_S ilde{C}^1$	$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right) \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right)$				
NNLL	$ ilde{C}^0 - lpha_S ilde{C}^1$	$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right) \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right) \alpha_S^n \ln^{2n-2} \left(\frac{Q^2}{\mu_b^2}\right)$				
NNLL'	$ ilde{C}^0 - lpha_S ilde{C}^1 - lpha_S^2 ilde{C}^2$	$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right) \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right) \alpha_S^n \ln^{2n-2} \left(\frac{Q^2}{\mu_b^2}\right)$				
NNNLL	$ ilde{C}^0$ $lpha_S ilde{C}^1$ $lpha_S^2 ilde{C}^2$	$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right) \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right) \alpha_S^n \ln^{2n-2} \left(\frac{Q^2}{\mu_b^2}\right) \alpha_S^n \ln^{2n-3} \left(\frac{Q^2}{\mu_b^2}\right)$				

each TMD enters the cross section with a specific dependence on (azimuthal) angles of kinematics → extract them with azimuthal (spin) asymmetries All relevant azimuthal (spin) asymmetries have been measured by

each TMD enters the cross ∉ction with a specific dependence on (azimuthal) angles of kinematics → extract them with azimuthal (spin) asymmetries All relevant azimuthal (spin) asymmetries have been measured by

how does $\langle \mathbf{k}_T^2 \rangle$ depend on x ? on flavor ? on energy ?

Extractions of unpolarized TMD

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2013 arXiv:1309.3507	parton model	~	×	×	×	1538
Torino 2014 arXiv:1312.6261	parton model	(separately)	(separately)	×	×	576 (H) 6284 (C)
DEMS 2014 arXiv:1407.3311	NNLL	×	×	~	~	223
EIKV 2014 arXiv:1401.5078	NLL	1 (x,Q²) bin	1 (x,Q²) bin	~	~	500 (?)
SIYY 2014 arXiv:1406.3073	NLL'	×	~	~	~	200 (?)
Pavia 2017 arXiv:1703.10157	NLL	~	~	>	~	8059
SV 2017 arXiv:1706.01473	NNLL'	×	×	>	✔ (LHC)	309
BSV 2019 arXiv:1902.08474	NNLL'	×	×	~	✔ (LHC)	457
Pavia 2019 in preparation	up to N ³ LL	×	×	~	✔ (LHC)	319

Extractions of unpolarized TMD

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2013 arXiv:1309.3507	parton model	~	×	×	×	1538
Torino 2014 arXiv:1312.6261	parton model	(separately)	(separately)	×	×	576 (H) 6284 (C)
DEMS 2014 arXiv:1407.3311	NNLL	×	×	>	~	223
EIKV 2014 arXiv:1401.5078	NLL	1 (x,Q²) bin	1 (x,Q²) bin	~	~	500 (?)
SIYY 2014 arXiv:1406.3073	NLL'	×	~	>	~	200 (?)
Pavia 2017 arXiv:1703.10157	NLL	~	~	>	~	8059
SV 2017 arXiv:1706.01473	NNLL'	×	×	>	✔ (LHC)	309
BSV 2019 arXiv:1902.08474	NNLL'	×	×	>	✔ (LHC)	457
Pavia 2019 in preparation	up to N ³ LL	×	×	 	✔ (LHC)	319

The Pavia 2017 fit

first fit putting together SIDIS, Drell-Yan, and Z production

The Pavia 2017 fit

first fit putting together SIDIS, Drell-Yan, and Z production

Impact of TMD on W mass extraction

PV 2017 global fit: no room for flavor dependence of intrinsic k_T

PV 2013 only Hermes data: slightly better χ^2 with flavor dependence of k_T

Using TMD with intrinsic nonperturbative part $\int_{NP}^{q} (x, b_T; Q_0^2)$

- generate pseudo-data for q_T-spectrum of W[±] with sets of flavor-dep. parameters that give the same q_T-spectrum of Z⁰, from p_T-lepton data and uncertainties of ATLAS and CDF
- make a template fit of these pseudo-data by varying M_W on a set of flavor-indep. parameters *Bacchetta, Bozzi, Radici, Ritzmann, Signori,*

Bacchetta, Bozzi, Radici, Ritzmann, Signori, P.L. **B788** (19) 542, arXiv:1807.02101

Impact of TMD on W mass extraction

PV 2017 global fit: no room for flavor dependence of intrinsic k_T

PV 2013 only Hermes data: slightly better χ^2 with flavor dependence of k_T

Using TMD with intrinsic nonperturbative part $\int_{NP}^{q} (x, b_T; Q_0^2)$

- generate pseudo-data for q_T-spectrum of W[±] with sets of flavor-dep. parameters that give the same q_T-spectrum of Z⁰, from p_T-lepton data and uncertainties of ATLAS and CDF
- make a template fit of these pseudo-data by varying M_W on a set of flavor-indep. parameters *Bacchetta, Bozzi, Radici, Ritzmann, Signori,*

shifts comparable to world-average uncertainty current extractions of M_W do not include flavor sensitivity; we might need it for a better ΔM_W

Gonzalez, Rogers, Sato, Wang, P.R. D98 (18) 114005, arXiv:1808.04396

Gonzalez, Rogers, Sato, Wang, P.R. D**98** (18) 114005, arXiv:1808.04396

Discrepancies largely resolved by improving perturb. accuracy (NLO) and modifying the gluon collinear fragmentation function

Gonzalez, Rogers, Sato, Wang, P.R. D**98** (18) 114005, arXiv:1808.04396

Bacchetta et al., P.R. D**100** (19) 014018, arXiv:1901.06916

Discrepancies largely resolved by improving perturb. accuracy (NLO) and modifying the gluon collinear fragmentation function

However, problems found also at low-energy Drell-Yan

Gonzalez, Rogers, Sato, Wang, P.R. D98 (18) 114005, arXiv:1808.04396

Bacchetta et al., P.R. D100 (19) 014018, arXiv:1901.06916

NLO

LO

Discrepancies largely resolved by improving perturb. accuracy (NLO) and modifying the gluon collinear fragmentation function

However, problems found also at low-energy Drell-Yan

q_T [GeV]

while trying to solve the (SIDIS) normalization problem, focus on improving the accuracy of TMD description of low-q_T Drell-Yan d σ data

State-of-the-art precision at LHC

Measurements of q_T distributions of Z have reached the sub% precision Calculations have reached the NNLO-N³LL level Bizon et al., E.P.J. **C79** (19) 868, arXiv:1905.05171

Extractions of unpolarized TMD

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2013 arXiv:1309.3507	parton model	~	×	×	×	1538
Torino 2014 arXiv:1312.6261	parton model	(separately)	(separately)	×	×	576 (H) 6284 (C)
DEMS 2014 arXiv:1407.3311	NNLL	×	×	>	~	223
EIKV 2014 arXiv:1401.5078	NLL	1 (x,Q²) bin	1 (x,Q²) bin	~	~	500 (?)
SIYY 2014 arXiv:1406.3073	NLL'	×	~	>	~	200 (?)
Pavia 2017 arXiv:1703.10157	NLL	~	~	>	~	8059
SV 2017 arXiv:1706.01473	NNLL'	×	×	>	✔ (LHC)	309
BSV 2019 arXiv:1902.08474	NNLL'	×	×	>	✔ (LHC)	457
Pavia 2019 in preparation	up to N ³ LL	×	×	 	✔ (LHC)	319

The BSV 2019 fit

first fit to fully include LHC data at high accuracy NNLO+NNLL

current top accuracy NNLO+N³LL, matching LHC state-of-art

data coverage similar to BSV19 + STAR data

functional form (nonperturbative part)

data points 319 **#** fit parameters 9 global $\chi^2/d.o.f.$ 1.12 ± 0.01

• correlation of syst. errors (including collinear PDFs)

- Montecarlo method for stat. errors
- including kin. cuts on final leptons

• full integration in bins when required (no "narrow-width",... approx.)

no ad-hoc normalization

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, in preparation

 $e^{-g_2 \log\left(\frac{Q^2}{Q_0^2}\right)\frac{b_T^2}{4} - g_{2B} \log\left(\frac{Q^2}{Q_0^2}\right)\frac{b_T^4}{4}} f_{\rm NP}(x, b_T)$ evolution intrinsic "Q - Gaussian" PDF = MMHT2014nnlo68clwidth(x) (similar to PV2017)

Very good reproduction of low- and high-energy data

300 replicas

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, in preparation

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, in preparation

Effect of nonperturbative intrinsic part $f_{NP}(x,b_T)$ (not included in other benchmark codes)

G. Bozzi CERN EW Working Group, 10-14-2019

Pion unpolarized TMD

Gluon TMDs

basically unknown; so far, only explorations

.

See, e.g., Boer, den Dunnen, Pisano, Schlegel, Vogelsang, P.R.L. **108** (12) 032002 den Dunnen, Lansberg, Pisano, Schlegel, P.R.L. **112** (14) 212001 Mukherjee & Rajesh, P.R. D**93** (16)

(spin-orbit) correlation between k_T of parton and spin of Nucleon

the Sivers effect

Bacchetta & Contalbrigo, Il Nuovo Saggiatore **28** (12) n. 1,2

no polarization

polarization S_y **T**

distortion of quark distribution in transversely polarized proton P[†]

$$f_{q/p^{\uparrow}}(x, \boldsymbol{k}_{T}) = f_{1}^{q}(x, \boldsymbol{k}_{T}) - f_{1T}^{\perp q}(x, \boldsymbol{k}_{T}) \boldsymbol{S} \cdot \left(\frac{\hat{\boldsymbol{P}}}{M} \times \boldsymbol{k}_{T}\right)$$

Sivers, P.R. D41 (90) 83

non-universality of Sivers function

non-universality of Sivers function

the Sivers Single-Spin Asymmetry in SIDIS

First extraction of Sivers function using unpolarized TMDs f₁ and D₁ extracted from global fit of (SIDIS + Drell-Yan + Z-boson) data [the Pavia 2017 fit]

Bacchetta, Delcarro, Pisano, Radici, in preparation

The Pavia 2019 fit of Sivers f_{1T} (preliminary)

The Pavia 2019 fit of Sivers $f_{1T} \perp$ (preliminary)

-0.02

10⁻²

100

DOWN

 10^{-1}

The Pavia 2019 fit of Sivers $f_{1T} \perp$ (preliminary)

Bacchetta, Delcarro, Pisano, Radici, in preparation

$$f_{q/p^{\uparrow}}(x, \boldsymbol{k}_T) = f_1^q(x, \boldsymbol{k}_T)$$

$$f_{q/p^{\uparrow}}(x, \boldsymbol{k}_{T}) = f_{1}^{q}(x, \boldsymbol{k}_{T})$$
$$-f_{1T}^{\perp q}(x, \boldsymbol{k}_{T}) \boldsymbol{S} \cdot \left(\frac{\hat{\boldsymbol{P}}}{M} \times \boldsymbol{k}_{T}\right)$$

(distorted) plots entirely based on data

Conclusions

Backup

SIDIS data as multiplicities
$$M_N^h = \frac{d\sigma_N^h/dx \, dz \, dP_{hT}^2 \, dQ^2}{d\sigma_{\text{DIS}}/dx \, dQ^2}$$

it should be $N = \int dz dP_{hT}^2 M_N^h = 1$ collinear formula

Z

Z

F. Piacenza, Ph.D. Thesis

x
$$1/N$$
 at $O(\alpha_S)$

normalization
 factors required
 to fit COMPASS
 data (at NLL')

similarity between x and • might suggest that normalization problems are related to the fixed-order collinear formula (and to the matching between TMD and collinear regimes)

parametrization of Sivers $f_{1T} \perp$

Pavia 2017 fit
unpol. TMD at scale Q₀

$$f_{1}^{q}(x, b_{T}; Q_{0}^{2}) = f_{1}^{q}(x; Q_{0}^{2}) f_{NP}(x, b_{T})$$
Bacchetta, Delcarro, Pisano, Radici,
in preparation
Bacchetta, Delcarro, Pisano, Radici,
figure (x, b_T; Q_0)
Figure (x, b_T; Q_1)
Figure (x, b_T; Q_2)

P

Sivers function ↔ quark total J

What's next ?

What's next ?

