New Horizons for Strong QCD Theory in the 12 GeV era at Jefferson Lab

Strong QCD from

Hadron Structure Experiments

Jefferson Lab, Newport News, VA 6-9 November 2019

- QCD at Fermi scale
- "See" hadron structure
- CEBAF 12 GeV upgrade
 - Science & Capabilities
 - Initial excitements
 - Future opportunities
 - JLab12 to EIC
 - Summary

Jianwei Qiu Theory Center

QCD landscape of nucleon and nuclei – Strong QCD!

beautifully!

QCD landscape of nucleon and nuclei – Strong QCD!

is the most interesting, rich, and complex, but mysterious and challenging regime of the theory!

We do not see quarks and gluons in isolation!

All emergent phenomena depend on the probes and the scale at which we probe them!

works

beautifully!

QCD landscape of nucleon and nuclei – Strong QCD!

Jefferson Lab

□ QCD landscape of nucleon and nuclei – Strong QCD!

❑ Need to identify observables with two-momentum scales:

 $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{\rm QCD}$

- Hard scale: localizes the probe particle nature of quarks/gluons
- Soft" scale: could be more sensitive to the hadron structure ~ 1/fm

 \diamond Hit the hadron "very hard" without breaking it, clean information on the structure!

QCD landscape of nucleon and nuclei – Strong QCD!

Structure: in terms of quantum matrix elements/probabilities, ...

QCD factorization works to the precision

Data sets for Global fits:

	Process	Subprocess	Partons	x range
	$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm} + X$	$\gamma^* q \rightarrow q$	q, \overline{q}, g	$x \gtrsim 0.01$
	$\ell^{\pm} n/p \to \ell^{\pm} + X$	$\gamma^* d/u \rightarrow d/u$	d/u	$x \gtrsim 0.01$
	$pp \rightarrow \mu^+\mu^- + X$	$u\bar{u}, d\bar{d} \rightarrow \gamma^*$	\overline{q}	$0.015 \lesssim x \lesssim 0.35$
Fixed Target	$pn/pp \rightarrow \mu^+\mu^- + X$	$(u\bar{d})/(u\bar{u}) \rightarrow \gamma^*$	d/u	$0.015 \lesssim x \lesssim 0.35$
-	$\nu(\bar{\nu}) N \rightarrow \mu^-(\mu^+) + X$	$W^*q \rightarrow q'$	q, \overline{q}	$0.01 \lesssim x \lesssim 0.5$
	$\nu N \rightarrow \mu^- \mu^+ + X$	$W^*s \rightarrow c$	S	$0.01 \lesssim x \lesssim 0.2$
	$\bar{\nu}N \rightarrow \mu^+\mu^- + X$	$W^*S \rightarrow C$	5	$0.01 \lesssim x \lesssim 0.2$
	$e^{\pm} p \rightarrow e^{\pm} + X$	$\gamma^* q \rightarrow q$	g, q, \overline{q}	$0.0001 \lesssim x \lesssim 0.1$
	$e^+ p \rightarrow \bar{\nu} + X$	$W^+\{d, s\} \rightarrow \{u, c\}$	d, s	$x \gtrsim 0.01$
Collider DIS	$e^{\pm}p \rightarrow e^{\pm}c\overline{c} + X$	$\gamma^* c \to c, \gamma^* g \to c \overline{c}$	с, д	$10^{-4} \lesssim x \lesssim 0.01$
	$e^{\pm}p \rightarrow e^{\pm}b\overline{b} + X$	$\gamma^*b \rightarrow b, \gamma^*g \rightarrow b\bar{b}$	b, g	$10^{-4} \lesssim x \lesssim 0.01$
	$e^{\pm}p \rightarrow \text{jet} + X$	$\gamma^*g \rightarrow q\bar{q}$	8	$0.01 \lesssim x \lesssim 0.1$
	$p\bar{p} \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.01 \lesssim x \lesssim 0.5$
Tevatron	$p\bar{p} \rightarrow (W^{\pm} \rightarrow \ell^{\pm} \nu) + X$	$ud \rightarrow W^+, \overline{u}d \rightarrow W^-$	u,d,ū,đ	$x \gtrsim 0.05$
16 valuon	$p\bar{p} \rightarrow (Z \rightarrow \ell^+ \ell^-) + X$	$uu, dd \rightarrow Z$	u,d	$x \gtrsim 0.05$
	$p\bar{p} \rightarrow t\bar{t} + X$	$qq \rightarrow t\bar{t}$	q	$x \gtrsim 0.1$
	$pp \rightarrow \text{jet} + X$	$gg, qg, q\bar{q} \rightarrow 2j$	g,q	$0.001 \lesssim x \lesssim 0.5$
	$pp \rightarrow (W^{\pm} \rightarrow \ell^{\pm} \nu) + X$	$ud \rightarrow W^+, d\bar{u} \rightarrow W^-$	u,d,ū,đ,g	$x \gtrsim 10^{-3}$
	$pp \rightarrow (Z \rightarrow \ell^+ \ell^-) + X$	$q\bar{q} \rightarrow Z$	q, \overline{q}, g	$x \gtrsim 10^{-3}$
	$pp \to (Z \to \ell^+ \ell^-) + X, p_\perp$	$gq(\bar{q}) \rightarrow Zq(\bar{q})$	g, q, \overline{q}	$x \gtrsim 0.01$
	$pp \rightarrow (\gamma^* \rightarrow \ell^+ \ell^-) + X$, Low mass	$q\bar{q} \rightarrow \gamma^*$	q, \overline{q}, g	$x \gtrsim 10^{-4}$
LHC	$pp \rightarrow (\gamma^* \rightarrow \ell^+ \ell^-) + X$, High mass	$q\bar{q} \rightarrow \gamma^*$	\overline{q}	$x \gtrsim 0.1$
	$pp \rightarrow W^+ \bar{c}, W^- c$	$sg \rightarrow W^+c, \bar{s}g \rightarrow W^-\bar{c}$	<i>s</i> , <i>s</i>	$x \sim 0.01$
	$pp \rightarrow t\bar{t} + X$	$gg \rightarrow t\bar{t}$	8	$x \gtrsim 0.01$
	$pp \rightarrow D, B + X$	$gg \rightarrow c\overline{c}, b\overline{b}$	8	$x \gtrsim 10^{-6}, 10^{-5}$
	$pp \rightarrow J/\psi, \Upsilon + pp$	$\gamma^*(gg) \rightarrow c\overline{c}, b\overline{b}$	8	$x \gtrsim 10^{-6}, 10^{-5}$
	$pp \rightarrow \gamma + X$	$gq(\bar{q}) \rightarrow \gamma q(\bar{q})$	8	$x \gtrsim 0.005$

Kinematic coverage:

QCD factorization works to the precision

SM: Electroweak processes + QCD perturbation theory + PDFs works!

Lab

"See" the hadron structure

PDFs, TMDs, GPDs, ... non-perturbative!

"See" the hadron structure

Boosted partonic structure is encoded in probability distributions: PDFs, TMDs, GPDs, ... non-perturbative!

Tools to "see" the hadron's partonic structure:

- Experiment + QCD factorization + Global analysis/Phenomenology + Computing
- ♦ Lattice QCD + QCD factorization + Global analysis/Phenomenology + Computing

Complementary to each other, need each other, ...

Jefferson Lab

xр

QCD needs lepton-hadron facility

Hadrons are produced from the energy in e+e- collisions:

- No hadron to start with
- Emergence of hadrons

Hadrons are produced in hadron-hadron collisions:

- Partonic structure
- Emergence of hadrons
- Heavy ion target or beam(s)

Also at the LHC

Hadrons are produced in lepton-hadron collisions:

One facility covers all!

- Colliding hadron can be broken or stay intact!
- Imaging partonic structure
- Emergence of hadrons
- Heavy ion target or beam

JLab 12 GeV Valence

Sea and glue

Also at COMPASS & future EIC

CEBAF 12 GeV Upgrade

Project Completion Approved on September 27, 2017 All four Halls are in physics operations JLab 12 GeV science era is here! A critical step toward EIC!

A Lepton-Hadron Facility has the highest luminosity

JLab12 Scientific Questions

- What is the role of gluonic excitations in the spectroscopy of light mesons? Can these excitations elucidate the origin of quark confinement?
- Where is the missing spin in the nucleon? Is there a significant contribution from valence quark orbital angular momentum?
- Can we reveal a novel landscape of nucleon substructure through 3D imaging at the femtometer scale?
- What is the relation between short-range N-N correlations, the partonic structure of nuclei, and the nature of the nuclear force?
- Can we discover evidence for physics beyond the standard model of particle physics?

JLab12 Scientific Capabilities

V.D. Burkert's talk on "Explore Strong QCD in the JLab Experiments ..."

Hall D – exploring origin of confinement by studying exotic mesons

Hall B – understanding nucleon structure via generalized parton distributions (GPDs) and transverse momentum dependent distributions (TMDs)

Hall C – precision determination of valence quark properties in nucleons and nuclei

Hall A – short range correlations, form factors (SBS), hyper-nuclear physics, future new experiments (e.g., SoLID and MOLLER)

Strong QCD "Theory" at this conference

LQCD – beyond the mass spectrum

LQCD – beyond the mass spectrum

Hadron Spectroscopy - JPAC

□ Searching for the Exotics:

See talk by Szczepaniak

- "Determination of the Pole Position of the Lightest Hybrid Meson Candidate" Exotics in $\eta^{(')}\pi$ – led to the 1st Exotic π_1
- \Rightarrow For the first time pole parameters of the exotic π₁ resonance were extracted using a coupled channel fit to COMPASS η^(') π P- and D-waves
- \Rightarrow Results compatible with the existence of a single π₁ meson, which solves a longstanding puzzle about two different π₁(1400) and π₁(1600), decaying separately into ηπ and η' π

"See" the 3D hadron structure

Two-scale observables are natural in lepton-hadron collisions:

♦ Semi-inclusive DIS:

SIDIS: Q>>P_T

Parton's confined motion encoded into TMDs

♦ Exclusive DIS:

Imaging quarks

DVCS: Q² >> |t|

Parton's spatial imaging from Fourier transform of GPDs' t-dependence

Heavy quarkonium: Q²+M² >> |t|

Imaging the glue only at EIC Need JLab12 to establish, ... Jefferson Lab

Theory is solid for matching parton to hadron

abc

Wigner distributions in 5D (or GTMDs):

TMDs & SIDIS as an example:

 \diamond Low P_{hT} (P_{hT} << Q) – TMD factorization: $\sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \hat{H}(Q) \otimes \Phi_f(x, k_\perp) \otimes \mathcal{D}_{f \to h}(z, p_\perp) \otimes \mathcal{S}(k_{s\perp}) + \mathcal{O} \left| \frac{P_{h\perp}}{O} \right|$ \Rightarrow High $P_{hT}(P_{hT} \sim Q) - Collinear factorization:$ $\sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \hat{H}(Q, P_{h\perp}, \alpha_s) \otimes \phi_f \otimes D_{f \to h} + \mathcal{O}\left(\frac{1}{P_{h\perp}}, \frac{1}{O}\right)$ P_{hT} Integrated - Collinear factorization: $\sigma_{\text{SIDIS}}(Q, x_B, z_h) = \tilde{H}(Q, \alpha_s) \otimes \phi_f \otimes D_{f \to h} + \mathcal{O}\left(\frac{1}{O}\right)$ $\diamond \text{ Very high } P_{hT} \Rightarrow Q - \text{Collinear factorization:} \\ \sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \sum_{\cdot} \hat{H}_{ab \to c} \otimes \phi_{\gamma \to a} \otimes \phi_b \otimes D_{c \to h} + \mathcal{O}\left(\frac{1}{Q}, \frac{Q}{P_{h\perp}}\right) \text{rson Lab}$

First comprehensive study of the confined motion - JLab

Quantum correlation between hadron spin and parton motion:

Sivers effect – Sivers function

Hadron spin influences parton's transverse motion

Quantum correlation between parton's spin and its hadronization:

Collins effect – Collins function

Parton's transverse polarization influences its hadronization

SIDIS is ideal for probing TMDs:

 $\begin{aligned} A_{UT}^{Collins} &\propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} &\propto h_1 \otimes H_1^{\perp} \\ A_{UT}^{Sivers} &\propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} &\propto f_{1T}^{\perp} \otimes D_1 \\ A_{UT}^{Pretzelosity} &\propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} &\propto h_{1T}^{\perp} \otimes H_1^{\perp} \\ \end{aligned}$ Another strength of lepton-hadron machine!

First comprehensive study of the spatial imaging - JLab

No color elastic nucleon form factor!

Spatial distribution of quark/gluon densities – GPDs **Quark "form factor":**

$$F^{q} = \frac{1}{2} \int \left. \frac{\mathrm{d}z^{-}}{2\pi} \,\mathrm{e}^{\mathrm{i}xP^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p \rangle \right|_{z^{+}=0, \mathbf{z}=0}$$

$$= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t)\bar{u}(p')\gamma^{+}u(p) + E^{q}(x,\xi,t)\bar{u}(p')\frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m}u(p) \right]$$

with $\xi = (P'-P) \cdot n/2$ and $t = (P'-P)^{2} \Rightarrow -\Delta_{\perp}^{2}$ if $\xi \to 0$
Gauge link: $W[a,b] = P \exp\left(ig \int_{b}^{a} dx^{-}A^{+}(x^{-}n_{-})\right)$
Mueller et al., 94;
Ji, 96;

|₁ξ – x

Kinematics:

Two more for quarks:

 $\gamma \cdot n \longrightarrow \gamma \cdot n \gamma_5$ with

 $\tilde{H}_q(x,\xi,t,Q), \quad \tilde{E}_q(x,\xi,t,Q)$

Jefferson Lab

Radyushkin, 96

g↓q

P'

Definition of GPDs

Gluon "form factor":

Mueller et al., 94; Ji, 96; Radyushkin, 96

$$=\frac{1}{2P^{+}}\left[H^{g}(x,\xi,t)u(p')\gamma^{+}u(p)+E^{g}(x,\xi,t)u(p')\frac{\mathrm{i}\sigma^{+\alpha}\Delta_{\alpha}}{2m}u(p)\right]$$

Two more for gluons: $\tilde{H}^g(x,\xi,t) = \tilde{E}^g(x,\xi,t)$

 $F^{g} = \frac{1}{P^{+}} \int \frac{\mathrm{d}z^{-}}{2\pi} \,\mathrm{e}^{\mathrm{i}xP^{+}z^{-}} \langle p' | G^{+\mu}(-\frac{1}{2}z) G_{\mu}^{+}(\frac{1}{2}z) | p \rangle \bigg|_{z^{+}=0, z=0}$

with the two gluon field strength contracted anti-symmetrically

□ Forward limit – connection to collinear PDFs:

$$\begin{aligned} H^{q}(x,0,0) &= q(x), \quad \tilde{H}^{q}(x,0,0) = \Delta q(x) & \text{for } x > 0 \\ H^{q}(x,0,0) &= -\bar{q}(-x), \quad \tilde{H}^{q}(x,0,0) = \Delta \bar{q}(-x) & \text{for } x < 0 \\ H^{g}(x,0,0) &= xg(x), \quad \tilde{H}^{g}(x,0,0) = x\Delta g(x) & \text{for } x > 0 \end{aligned}$$

The factorization scale dependence is suppressed

Foundation for the imaging and proton "radius" of quarks/gluons

Jefferson Lab

QCD energy-momentum tensor:

See talks by Elouadrhiri and Liuti for connection to pressure

$$T^{\mu\nu} = \sum_{i=q,g} T^{\mu\nu}_{i} \quad \text{with} \quad T^{\mu\nu}_{q} = \bar{q}\gamma^{(\mu}i\overleftrightarrow{D^{\nu}}) q$$

$$T^{\mu\nu}_{g} = G^{\mu\alpha}G_{\alpha}^{\ \nu} + \frac{1}{4}g^{\mu\nu}G^{\alpha\beta}G_{\alpha\beta}$$

$$\text{Form factors:} \quad \langle p'|T^{\mu\nu}_{q,g}|p\rangle = A_{q,g}(t)\bar{u}P^{(\mu}\gamma^{\nu)}u + B_{q,g}(t)\bar{u}\frac{P^{(\mu}i\sigma^{\nu)\alpha}\Delta_{\alpha}}{2m}u$$

$$+ C_{q,g}(t)\frac{\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^{2}}{m}\bar{u}u + \bar{C}_{q,g}(t)mg^{\mu\nu}\bar{u}u$$

□ Light-cone helicity operator:

$$J^{3} = \int dx^{-} d^{2}x M^{+12}(x)$$
 with $M^{\alpha\mu\nu} = T^{\alpha\nu}x^{\mu} - T^{\alpha\mu}x^{\nu}$

Connection to the proton spin:

$$\begin{split} \langle J_q^3 \rangle &= \frac{1}{2} [A_q(0) + B_q(0)] , \quad \langle J_g^3 \rangle = \frac{1}{2} [A_g(0) + B_g(0)] \\ A_q(t) + B_q(t) &= \int_{-1}^1 dx \, x [H_q(x,\xi,t) + E_q(x,\xi,t)] \\ A_g(t) + B_g(t) &= \int_0^1 dx [H_g(x,\xi,t) + E_g(x,\xi,t)] \end{split}$$

Impact parameter dependent quark distribution:

$$q(x,b_{\perp},Q) = \int d^2 \Delta_{\perp} e^{-i\Delta_{\perp} \cdot b_{\perp}} H_q(x,\xi=0,t=-\Delta_{\perp}^2,Q)$$

 $q(x,\mathbf{b}_{\perp})$ for unpol. p

Unpolarized proton

- $F_1(-\Delta_{\perp}^2) = \int dx H(x, 0, -\Delta_{\perp}^2)$
- x =momentum fraction of the quark
- \mathbf{b}_{\perp} relative to \perp center of momentum
- small x: large 'meson cloud'
- larger x: compact 'valence core'
- $x \to 1$: active quark becomes center of momentum
- $\rightarrow \vec{b}_{\perp} \rightarrow 0$ (narrow distribution) for $x \rightarrow 1$

Jefferson Lab

M. Burkdart, PRD 2000

Hunting for GPDs – Exclusive DIS

D Much more complicated – (x, ξ , t) variables:

 $\diamond\,$ Challenge to derive GPDs from data

GPDs could tell us:

∻

- $\diamond\,$ Orbital contribution to proton's spin
- ♦ Proton radius of quark & gluon density
- \diamond Hints for color confining radius/mechanism
- ♦ Origin of nuclear force, ...

QCD factorization – Theory is solid

□ Deep Virtual Compton Scattering (DVCS): $\gamma^*(q) + p(p) \rightarrow \gamma^*(q') + p(p')$

□ Factorization:

$$\begin{aligned} \mathcal{A}(\gamma^* p \to \gamma p) &= \sum_i \int_{-1}^1 dx \, T^i(x, \xi, \rho, Q^2) \, F^;(x, \xi, t) \\ \rho &= -(q+q')^2 / 2(p+p') \cdot (q+q') \end{aligned}$$

Deep Virtual Meson Production (DVMP):

$$\gamma^*(q) + p(p) \rightarrow M(q') + p(p')$$

G Factorization:

$$\mathscr{A}(\gamma_L^* p \to M_L p) = \frac{1}{Q} \sum_{ij} \int_{-1}^1 \mathrm{d}x$$
$$\times \int_0^1 \mathrm{d}z \ T^{ij}(x,\xi,z,Q^2) F^i(x,\xi,t) \Phi^j(z)$$

D Evolution:

Factorization nationally lead to evolution equations for GPDs

γ*(q')

М

 $\gamma^*(q)$

Η

Α

H

A

Data: Just the beginning

JLab E12-06-114 DVCS/Hall A Experiment at 11 GeV

Sample of cross-section results:

JLab DVCS/Hall B Experiment at 11 GeV

DVCS at future EIC (White Paper)

Cross Sections:

₋ab

Imaging the gluon (White Paper)

Lattice QCD – ab initio Simulation of QCD

Baryon spectrum:

Reproduction of light baryon masses:

- ♦ Agreement between lattice discretizations
- ♦ Reproduction of experimental results

lacksquare Lattice "time" is Euclidean: $\ au=i\,t$

Lattice cannot calculate PDFs, TMDs, GPDs, ..., directly, whose operators are time-dependent!

Prediction of yet to be observed baryons

Agreement between lattice schemes

arXiv:1704.02647

Lattice meets Phenomenology: Moments

Moments of PDFs – matrix elements of local operators:

 $\langle x^n(\mu^2) \rangle_q \equiv \int_0^1 dx \, x^n \, q(x,\mu^2) \qquad q^{\pm} \equiv q \pm \bar{q} \quad \text{and} \quad \Delta q^{\pm} \equiv \Delta q \pm \Delta \bar{q}$

Unpolarized:

Moment	Lattice QCD	Global Fit	PDF4LHC
$\langle x \rangle_{u^+ - d^+}$	0.119-0.226	0.161(18)	0.155(5)
$\langle x \rangle_{u}^{+}$	0.453(75) [†]	0.352(12)	0.347(5)
$\langle x \rangle_{d+}$	0.259(74)†	0.192(6)	0.193(6)
$\langle x \rangle_{s+}$	0.092(41) [†]	0.037(3)	0.036(6)
$\langle x \rangle_g$	0.267(35) [†]	0.411(8)	0.414(9)

[†] Single lattice result [PRL 119 (2017) 142002].

 $q^{\pm} = q \pm \bar{q}, q = u, d, s; Q = 2$ GeV. For details, see [Prog.Part.Nucl.Phys. 100 (2018) 107]

Lattice meets Phenomenology: Moments

D Polrized:

Moment	Lattice QCD	Global Fit	JAM17
g_A	1.195(39)* 1.279(50)**	1.275(12)	1.240(41)
$\langle 1 \rangle_{\Delta u} +$	0.830(26) [†]	0.813(25)	0.812(22)
$\left< 1 \right>_{\Delta d} +$	-0.386(17)†	-0.462(29)	-0.428(31)
$\langle 1 \rangle_{\Delta s} +$	-0.0520.014	-0.114(43)	-0.038(96)
$\langle x \rangle_{\Delta u^ \Delta d^-}$	0.146-0.279	0.199(16)	0.241(26)

* $N_f = 2$. ** $N_f = 2 + 1 + 1$. [†] Single lattice result [PRL 119 (2017) 142002]. $\Delta q^{\pm} = \Delta q \pm \Delta \bar{q}, q = u, d, s; Q = 2$ GeV. For details, see [Prog.Part.Nucl.Phys. 100 (2018) 107]

arXiv: 1711.07916

Lattice meets Phenomenology: Moments

Transversity:

Moment	Lattice QCD	Global Fit	JAM18
g_T	0.989(32)(10)	0.61(25)	1.0(1)
g_T^u	0.784(28)(10)	0.39(11)	0.3(2)
g_T^d	-0.204(11)(1)	-0.22(14)	-0.7(2)
g_T^s	-0.027(16)	—	—

 $q^+ = q + \bar{q}, q = u, d, s; Q = 2$ GeV. Lattice results from the 2019 FLAG review. Global fit [PRD 93 (2016) 014009] JAM18 [PRL 120 (2018) 152502]

arXiv: 1711.07916

Lattice meets Phenomenology: Data accuracy

 $g_{1}^{p}(x, Q^{2}) + C(x)$

Nocera @EINN2019

10000

World data for F₂^p

World data for g_1^p

Fits of *f* from **thousands** of data CT, MMHT, NNPDF, ... Fits of Δf from hundreds of data DSSV, JAM, NNPDF, ... Fits of *δf* from tens of data Kang; Anselmino; Bacchetta

Lattice meets Phenomenology: PDFs

Lattice meets Phenomenology: PDFs

LQCD/PQCD – hadron/nuclear structure

Ma and Qiu, arXiv:1404.6860

Good lattice cross sections:

 $\sigma_n(\omega,\xi^2,P^2) = \langle P | T\{\mathcal{O}_n(\xi)\} | P \rangle \quad \text{with} \ \omega \equiv P \cdot \xi, \ \xi^2 \neq 0, \ \text{and} \ \xi_0 = 0; \ \text{ and} \ \xi_0 = 0;$

- 1) can be calculated in lattice QCD with precision, has a well-defined continuum limit (UV+IR safe perturbatively), and
- 2) can be factorized into universal matrix elements of quarks and gluons with controllable approximation $P \rightarrow \sqrt{s}$ and $\xi \rightarrow 1/Q$ define collision kinematics

Tremendous potentials:

Access to large-x region, ... Neutron PDFs, ... (no free neutron target!) Meson PDFs, such as pion, kaon, ... More direct access to parton flavor, ...

1st LQCD calculation of pion valence PDFs!

Lattice QCD calculated PDFs – Quasi-PDFs approach

Unpolarized: Both LP3 and ETMC obtained their results at physical pion

6

2

One-loop matching Target mass corrections

Helicity distributions:

 $-P = 10\pi/L$

JAM17

NNPDF1.1pol DSSV08

See also talk by Lin

[C. Alexandrou et al. (ETMC), PRL 121 (2018) 112001] Jefferson Lab

 $\Delta u - \Delta d$

1

Lattice QCD calculated PDFs – Quasi-PDFs approach

Transversity distribution:

[C. Alexandrou et al. (ETMC), arXiv:1807.00232]

One-loop matching Target mass corrections

See also talk by Lin

Lattice QCD calculation of GPDs – Quasi-PDFs approach

Unpolarized quasi-GPDs

Scapeliato @EINN2019

Upon Fourier transform

Quasi-H and -E affected differently on the momentum boost

- quasi-H is compatible within errors
- quasi-E becomes symmetric in x (larger momenta will shed light on the behavior of the quasi-E)

Still non-physical results, matching is needed

Lattice QCD calculation of GPDs – Quasi-PDFs approach

Matching effect on the GPDs

Scapeliato @EINN2019

• We apply the RI \rightarrow MS matching [Y-S Liu et al., Phys.Rev. D100 (2019) no.3, 034006]

• Matching affects both H and E largely

Lattice QCD calculated PDFs – Pseudo-PDFs approach

Volume effect:

Discretization effect:

$a(\mathrm{fm})$	$M_{\pi}(\text{MeV})$	$L^3 \times T$
0.127(2)	415(23)	$24^3 \times 64$
0.127(2)	415(23)	$32^3 \times 96$
0.094(1)	390(71)	$32^3 \times 64$

[B. Joo et al. (JLab-W&M), arXiv:1908.09771]

See talk by Rudyshkin

N_f=2+1 clover fermions (3 ensembles):

CJ Extract/fit PDF from lattice data with a functional form similar to CJ and MSTW

Challenges due to lattice limitation Results are encouraging!

n Lab

Lattice QCD calculation of TMDs:

□ Sivers' sign change:

Engelhardt

@EINN2019

Advertisement – x-dependent TMDs:

Lattice QCD calculated pion distribution

 $m_{\pi} = 310 \,\mathrm{MeV}$, $P = 1.74 \,\mathrm{GeV}$ х

Lattice QCD calculated pion distribution

From JLab12 to EIC:

The future for Strong QCD

Electron-Ion Collider: the best future facility for Strong QCD:

See talk by Milner

- "... answer science questions that are compelling, fundamental, and timely, and help maintain U.S. scientific leadership in nuclear physics."
 - ... three profound questions: How does the mass of the nucleon arise? How does the spin of the nucleon arise? What are the emergent properties of dense systems of gluons?

Explore the emergent phenomena of QCD – the Strong QCD! Starting at JLab12, ...

What EIC can do, but, HERA & other colliders cannot do?

Why is so special about the Lepton-Hadron Collider?

Hit the proton with a well-controlled hard probe without breaking it!

Quantum imaging:

- ♦ HERA discovered: 15% of e-p events is diffractive Proton not broken!
- ♦ US-EIC: 100-1000 times luminosity Critical for 3D tomography!

Quantum interference & entanglement – dual role of hadron spin:

US-EIC: Highly polarized beams – Origin of hadron property: Spin, ... Direct access to chromo-quantum interference!

Nonlinear quantum dynamics – dual role of nuclei:

 US-EIC: Light-to-heavy nuclear beams – Origin of nuclear force, ... Catch the transition from chromo-quantum fluctuation to chromo-condensate of gluons, ...
 Emergence of hadrons (femtometer size detector!), – "a new controllable knob" – Atomic weight of nuclei

Summary and outlook

QCD at the Fermi-Scale is the most interesting, rich, and complex, but mysterious and challenging regime of the theory

QCD needs the lepton-hadron facility:

- ♦ Theory advances controlled two-scale observables
- $\diamond\,$ Lattice QCD is now able to meet with phenomenology
- ♦ Technology and Facility advances JLab 12 to EIC
- New emergent science Nuclear femtography

Also facilities from other countries

EIC is a ultimate QCD machine, could study major Nuclear Science issues that other existing facilities, even with upgrades, cannot do

US-EIC is sitting at a sweet spot for the rich QCD dynamics
 – capable of exploring the science of nuclear femtography!

□ It is a new era for the Strong QCD – QCD at the Fermi-Scale

