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On November 6, 2012, Charles Darwin received 4,000
write-in votes from voters in Athens-Clarke County,
Georgia, protesting the reelection of an anti-science
fundamentalist, Paul Broun, who ran unopposed in the
general election as a U.S. Representative. Broun sat on the
Science, Space and Technology Committee. Yet, on
27 Sep 2012, he called evolution and the Big Bang
Theory, “lies straight from the pit of hell”.

Today 7 years ago 

https://todayinsci.com/2/2_12.htm
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Strong QCD is born ~ 1µsec after the Big Bang

T ~ 102 s: nuclei

T ~ 10-6 s:  Nucleons 

T~ 10-9 s: QGP

Time after the Big Bang

With Jlab6 and JLAB12 we explore these events in (relative) isolation 

hot QCD

strong QCD

T ~ 10-6 s: Transition from 

the QGP to Nucleons

§ chiral symmetry is broken 

§ light quarks acquire mass dynamically 

§ color confinement becomes manifest 
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Probing baryons to learn about strong QCD

§ Energy spectrum - Search for new states  ➪ QGP to hadron 
transition,  symmetries underlying hadronic matter

§ Structure functions ➪ Parton and spin distributions (1D)

§ Form factors ➪ Effective degrees of freedom versus 
distance (2D)

§ Deeply exclusive/semi-inclusive processes & GPD/TMD 
➪ 3D imaging of nucleon

§ Moments of GPDs ➪ Forces on quarks, confinement

PoS(ICHEP 2010)538

nucleon structure functions Haiyan Gao
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Figure 1: (From Fig. 9 of [1]) HERA combined NC e+p reduced cross section and fixed-target data as a
function of Q2. The error bars indicate the total experimental uncertainty. The HERAPDF1.0 fit is superim-
posed. The bands represent the total uncertainty of the fit. Dashed lines are shown forQ2 values not included
in the QCD analysis.
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Figure 2: (From Fig. 18 of [1]) The parton distribution functions from HERAPDF1.0, xuv, xdv, xS =
2x(Ũ+ D̃), xg, at Q2 = 1.9 GeV2 (left) and Q2 = 10 GeV2 (right). The gluon and sea distributions are scaled
down by a factor 20. The experimental, model and parametrization uncertainties are shown separately.

one third of the total spin of the nucleon. Motivated by the EMC result, three decades of intensive
experimental and theoretical investigation have resulted in a great deal of knowledge on the partonic

3
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From the H spectrum to the N* spectrum

§ Understanding the hydrogen atom 
required understanding its
spectrum of sharp energy levels 

-> From the Bohr model to QED 
-> Lamb shift, … 

§ Understanding the proton requires mapping 
out its full energy spectrum of broad 
energy levels 

->  From the Quark model to QCD
->  Accuracy of predictions should be  

commensurate with experiments, i.e. 
O(few MeV), to allow for surprises.

Spectral series 
of hydrogen 

Niels Bohr, model of the 
hydrogen atom, 1913.

Analogy QCD & QED => path to discoveries ?

11/4/19 6



Establishing the N* spectrum – Precision & Polarization are essential
Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 2011 16

The fit of the �p� K� differential cross section
(CLAS 2009)
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The fit of the �p� K� differential cross section
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Hyperon photoproduction γp→K+Λ→K+pπ-

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 2011 16

The fit of the �p� K� differential cross section
(CLAS 2009)
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Fit by BnGa group

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis NSTAR 2011 17

The fit of the �p� K� recoil asymmetry
(CLAS 2009)
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The fit of the �p� K� recoil asymmetry
(CLAS 2009)
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A.V. Anisovich et al, EPJ A48, 15 (2012) 
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The fit of the �p� K� differential cross section
(CLAS 2009)
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Do new states correlate with predicted LQCD states?

N(1675)5/2-

N(1700)3/2-

N(1520)3/2-

N(1650)1/2-

N(1535)1/2-

N(2060)5/2-

N(2120)3/2-

N(1875)3/2-

N(1895)1/2-

R. Edwards et al., Phys.Rev. D84 (2011) 074508 

Lowest J- states 200-300 MeV highLowest J+ states 500 -700 MeV high

mπ=396MeV

11/4/19 8

mΩ= 1672 MeV

For quantitative comparisons projections at or near the physical pion mass are needed.

N(1900)3/2+

N(2100)1/2+

N(1880)1/2+

11/4/19 8

Ignoring the mass scale, the new states correlate with unoccupied JP levels in the LQCD spectrum.



Impact of new excited baryons

HRG-model

Hot QCD

Sandeep Chatterjee et al;
PRC 96, 054907 (2017) PDG 2016 with *, **

PDG 2018 with  
***, **** 

not included

N(1875)Strong QCD

è We do not describe the transition near the cross over temperature. 
Additional N* and D* states and hyperons will affect behavior.  11/4/19 9



Search for strange baryons

Experiments at JLab at GlueX and at 
CLAS12 search for excited hyperon 
states of Ξ0,- (S=-2) & Ω-`(S=-3)

Proposed Klong facility in Hall D to 
study hyperons KLp interactions. 

Multi-strange baryons difficult 
to produce with photon beams.  

Expected statistics for 
some final states and 
100 days data taking. 

A fertile ground for LQCD calculations. 
11/4/19 10



T>1014K 

qu
ar

k 
m

as
s(
G
eV
)

DSE (sQCD)
Lattice QCD (chiral extr.) 

T<1010K

Dynamical generation of mass modeled on 
the Lattice and in DSE on single quarks. 

de-confined

confinement

Bhagwat, M. S., et al.,  Phys. Rev. C 68, 015203
Bowman, P. O., et al.,Phys. Rev. D 71, 054507

Generating mass as the universe cools

Study this in measurements that are sensitive to the running quark mass.   11/4/19 11



Structure of e.m. FF of proton and neutron 

• Encode charge and current 
densities in the light cone 
frame.

• Small (~10%) non-quark pN
contributions at small Q2.

• Strong sensitivity to the 
running quark mass function. 

•Measurements up to higher 
Q2 planned or completed.

11 GeV projection

Magnetic neutron FFMagnetic proton FF

The quark mass function should be universal and apply also to N* transitions.11/5/19 12



Structure of excited baryons
§ charge transition densities
§ effective degrees of freedom 
§ running quark mass  
=> reveal nature of N* states

N(1675)5/2-

N(1520)3/2-

N(1535)1/2-

Δ(1620)1/2-

N(1440)1/2+

N(1710)1/2+
Δ(1232)3/2+

N(940)1/2+

L3q

0

1

0 1 2

2

N [ħω]

N(1680)5/2+

e

e
’ γv

N N, Y

N*,△*

A1/2, A3/2, S1/2 
F1*, F2*, F3*

π, η, ππ, K

[70,1-]

[56,2+]

[70,0+]

[56,0+]

Q

[56,0+]

http://pdg.lbl.gov/2019/reviews/rpp2018-rev-n-delta-resonances.pdf11/5/19 13



Transition amplitudes of prominent resonances

Dressed quark-core behavior accessible at Q2 > 2-4 GeV2. MB terms more prominent than in elastic FF. 

LF RQM: I. Aznauryan, V.B. arXiv:1603.06692 (2016)
LC SR: I. Anikin, V. Braun, N. Offen,  PRD92 (2015) 014018  

D(1232)3/2+

-60

-40

-20

0

20

40

60

80

0 1 2 3 4 5

Q2 (GeV2)

N(1440)1/2+ A1/2

N/
p/+/-

RPP
CLAS*

LF RQM
DSE*

MB contributions

MB contributions

DSE:  J. Segovia, C.D. Roberts et al., PRC94 (2016) 042201 

Roper N(1440)1/2+ is the first radial excitation of the nucleon’s quark core complemented by an external meson-baryon cloud. 
N(1535)1/2- is the first orbital excitation of the nucleon’s quark core complemented by an external meson-baryon cloud.

11/4/19 14



Probing the running quark mass at JLab12

qu
ar

k 
m

as
s(
G
eV
)

accessible
at 6 GeV  

accessible
at 11 GeV  

LQCD
DSE

Running quark massRoper resonance 

6 GeV`

Probe the transition from the interaction on dressed quarks to elementary quarks.

LF RQM

11 GeV

11/4/19 15



Search for Hybrid Nucleons NG

J.J. Dudek and R.G. Edwards,  PRD 85 (2012) 054016

1.3GeV

N

• q3G baryons have same JP values as q3 baryons, but are more extended objects
• May measure Q2 dependence to separate  - Program at CLAS12   
• Calculations for electrocouplings of hybrid states are needed 

LQCD 

clustered
in mass

‘hybrid’ states q3

Is glue manifest in the valence structure of excited nucleons?
q3G: Z.p. Li, V.B., Z.j. Li, Phys. Rev. D46 (1992) 70 

11/4/19 16



>70MeV/c

Radial TPC

Neutron structure F2
n/F2

p and d/u-ratio
Measure F2

n/F2
p to determine d(x)/u(x)  

1) Measure cross section ratio 3H/3He of mirror nuclei (MARATHON, completed). 

2) Detect low momentum protons to tag nearly unbound neutrons in deuterium (BoNuS12 in 2020)

e-D→e-psX n

ps

pe-

e-

track low energy 

protons in 5 Tesla

mag. field

Phys.Rev.Lett. 108 (2012) 199902 

11/4/19 17

Projected results for d(x)/u(x) for 12 GeV experiments.

Parton distribution functions are governed by sQCD. Recent 
progress in theory (X. Ji) may enable computing d(x)/u(x) in LQCD. 

11/4/19 17



Polarized PDFs on p, d,3He at 11GeV 

• Two experiments to measure 
polarized PDFs in the range  
x ≤ 0.8 on p/d and on neutrons. 

• A polarized target adapted to 
CLAS12 can achieve high-
precision results on helicity 
asymmetries on A1

p and A1
d by 

employing longitudinally 
polarized NH3 and ND3 targets. 

• Similar coverage is projected 
with the use of a polarized He-3
target in Hall A. 

X

A 1
n

Beam-Target double spin asymmetry

With the expected precision a serious effort should be launched to compute A1(x) 11/4/19 18



Moments of Spin Structure Functions

Expected �1
p for 30 days. CLAS12 data (Wmin=2 GeV)

Q2(GeV2)

�
1p

CLAS12 30 days 11 GeV
CLAS EG1a
SLAC E143 SLAC E155
CLAS EG1b
HERMES
Burkert-Ioffe

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5 6

• Inclusive polarized DIS data obtained at JLab@6GeV 
have permitted evaluation of the moments at low and 
intermediate Q2. 

• At 12 GeV the moments will be measured up to Q2 = 6 
GeV2 with much improved statistical precision. 

• With both proton and neutron measured, the Bjorken
sum can be evaluated, which relates to the integral.  

What projections from LQCD or sQCD are expected?   
11/4/19 19



H1, ZEUS

JLab Upgrade

11 GeV

H1, ZEUS

JLa
b @ 11 GeV

11 GeV27
 G

eV

20
0 

Ge
V

W = 2 GeV

Precision measurements 
in the high xB domain 
of exclusive processes 
requires high luminosity. 

0.7

HERMES

COMPASS

The 12 GeV Upgrade is well 
matched to  studies in the 
valence quark regime. 

Kinematic coverage for Imaging @ 11GeV

11/4/19 20

A flagship program of 
structure studies in 
deeply exclusive and 
semi-inclusive processes.   



Transverse Momentum Structure of Nucleon – TMDs

X. Ji: Viewing the proton through “color” filters 25

above expression, one finds pair creations and annihila-
tion terms. However, this is also true for the usual charge
density. Therefore we can speak of S(k) as a distribution
of vector charges and currents, but not a particle den-
sity. In nuclear physics where the non-relativistic dynam-
ics dominates, the proton spectral function in the nucleus
is positive definite and can be regarded as a particle den-
sity. The nuclear spectral function is directly measurable
through pick-up and knock-out experiments, in which E
and kare called the missing energy and missing momen-
tum, respectively (see for example [9]).

It is now easy to see that in the rest frame of the
proton, the Feynman quark distribution is

q(x) =
√

2
∫

d4k

(2π)4
δ(k0+ kz − xMN )S(k) . (4)

The x variable is simply a special combination of the
off-shell energy k0 and momentum kz. The parton dis-
tribution is the spectral function of quarks projected
along a special direction in the four-dimensional energy-
momentum space. The quarks with different k0 and kz

can have the same x, and moreover, the both x > 0 and
x < 0 distributions contain contributions from quarks and
anti-quarks.

3 Quantum phase-space distributions

Suppose we have a one-dimensional quantum mechanical
system with wave function ψ(x), the Wigner distribution
is defined as

W (x, p) =
∫

dηeipηψ∗(x − η/2)ψ(x + η/2) , (5)

where we have set ! = 1. When integrating out the coor-
dinate x, one gets the momentum density |ψ(p)|2, which
is positive definite. When integrating out p, the positive-
definite coordinate space density |ψ(x)|2 follows. For ar-
bitrary p and x, the Wigner distribution is not positive
definite and does not have a probability interpretation.
Nonetheless, for calculating the physical observables, one
can just take averages over the phase-space as if it is a
classical distribution

⟨Ô(x, p)⟩ =
∫

dxdp W (x, p)O(x, p) (6)

where the operators are ordered according to the Weyl
association rule. For a single-particle system, the Wigner
distribution contains everything there is in the quantum
wave function. For a many-body system, the Wigner dis-
tribution can be used to calculate the averages of all one-
body operators. Sign changes in the phase-space are a hint
that it carries non-trivial quantum phase information.

In QCD, the single-particle wave function must be re-
placed by (gauge-invariant) quantum fields, and hence it
is natural to introduce the Wigner operator,

ŴΓ (r, k) =
∫

d4ηeik·ηΨ(r − η/2)ΓΨ(r + η/2) , (7)

where r is the quark phase-space position and k the phase-
space four-momentum conjugated to the spacetime sepa-
ration η. Γ is a Dirac matrix defining the types of quark
densities because the quarks are spin-1/2 relativistic par-
ticles. Depending on the choice of Γ , we can have vector,
axial vector, or tensor density.

For non-relativistic systems for which the center-of-
mass is well-defined and fixed, one can define the phase-
space distributions by taking the expectation value of the
above Wigner operators in the R = 0 state. For the pro-
ton for which the recoil effect cannot be neglected, the
rest-frame state cannot be uniquely defined. Here we fol-
low Sachs, defining a rest-frame matrix element as that in
the Breit frame, averaging over all possible 3-momentum
transfers. Therefore, we construct the quantum phase-
space quark distribution in the proton as,

WΓ (r, k)=
1

2MN

∫
d3q

(2π)3
〈
q/2

∣∣∣ŴΓ (r, k)
∣∣∣− q/2

〉
(8)

=
1

2MN

∫
d3q

(2π)3
e− iq·r

〈
q/2

∣∣∣ŴΓ (0, k)
∣∣∣− q/2

〉
,

where the plane-wave states are normalized relativisti-
cally. The most general phase-space distribution depends
on seven independent variables.

The only way we know how to probe the single-particle
distributions is through high-energy processes, in which
the light-cone energy k− = (k0− kz)/

√
2 is difficult to

measure, where the z-axis refers to the momentum direc-
tion of a probe. Moreover, the leading observables in these
processes are associated with the “good” components of
the quark (gluon) fields in the sense of light-cone quantiza-
tion [10], which can be selected by Γ = γ+, γ+γ5, or σ+⊥

where γ+ = (γ0+ γz)/
√

2. The direction of the gauge
link, nµ, is then determined by the trajectories of high-
energy partons traveling along the light-cone (1, 0, 0, −1)
[11,12]. Therefore, from now on, we restrict ourselves to
the reduced Wigner distributions by integrating out k− ,

WΓ (r,k) =
∫

dk−

(2π)2
WΓ (r, k) , (9)

with a light-cone gauge link is now implied. Unfortunately,
there is no known experiment at present capable of mea-
suring this 6-dimensional distribution which may be called
the master or mother distribution.

Further phase-space reductions lead to measurable
quantities. Integrating out the transverse momentum of
partons, we obtain a 4-dimensional quantum distribution

f̃Γ (r, k+) =
1

2MN

∫
d3q

(2π)3
e−iq·r

∫
dη−

2π
eiη−k+

×
〈
q/2

∣∣Ψ(−η−/2)ΓΨ(η−/2)
∣∣− q/2

〉
. (10)

The matrix element under the integrals is what defines
the GPDs. More precisely, if one replaces k+ by Feyn-
man variable xp+ (p+ = Eq/

√
2, proton energy Eq =√

M2+ q2/4 ) and η− by λ/p+, the reduced Wigner dis-
tribution becomes the Fourier transformation of the GPD
FΓ (x, ξ, t)
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above expression, one finds pair creations and annihila-
tion terms. However, this is also true for the usual charge
density. Therefore we can speak of S(k) as a distribution
of vector charges and currents, but not a particle den-
sity. In nuclear physics where the non-relativistic dynam-
ics dominates, the proton spectral function in the nucleus
is positive definite and can be regarded as a particle den-
sity. The nuclear spectral function is directly measurable
through pick-up and knock-out experiments, in which E
and kare called the missing energy and missing momen-
tum, respectively (see for example [9]).

It is now easy to see that in the rest frame of the
proton, the Feynman quark distribution is

q(x) =
√

2
∫

d4k

(2π)4
δ(k0+ kz − xMN )S(k) . (4)

The x variable is simply a special combination of the
off-shell energy k0 and momentum kz. The parton dis-
tribution is the spectral function of quarks projected
along a special direction in the four-dimensional energy-
momentum space. The quarks with different k0 and kz

can have the same x, and moreover, the both x > 0 and
x < 0 distributions contain contributions from quarks and
anti-quarks.

3 Quantum phase-space distributions

Suppose we have a one-dimensional quantum mechanical
system with wave function ψ(x), the Wigner distribution
is defined as

W (x, p) =
∫

dηeipηψ∗(x − η/2)ψ(x + η/2) , (5)

where we have set ! = 1. When integrating out the coor-
dinate x, one gets the momentum density |ψ(p)|2, which
is positive definite. When integrating out p, the positive-
definite coordinate space density |ψ(x)|2 follows. For ar-
bitrary p and x, the Wigner distribution is not positive
definite and does not have a probability interpretation.
Nonetheless, for calculating the physical observables, one
can just take averages over the phase-space as if it is a
classical distribution

⟨Ô(x, p)⟩ =
∫

dxdp W (x, p)O(x, p) (6)

where the operators are ordered according to the Weyl
association rule. For a single-particle system, the Wigner
distribution contains everything there is in the quantum
wave function. For a many-body system, the Wigner dis-
tribution can be used to calculate the averages of all one-
body operators. Sign changes in the phase-space are a hint
that it carries non-trivial quantum phase information.

In QCD, the single-particle wave function must be re-
placed by (gauge-invariant) quantum fields, and hence it
is natural to introduce the Wigner operator,

ŴΓ (r, k) =
∫

d4ηeik·ηΨ(r − η/2)ΓΨ(r + η/2) , (7)

where r is the quark phase-space position and k the phase-
space four-momentum conjugated to the spacetime sepa-
ration η. Γ is a Dirac matrix defining the types of quark
densities because the quarks are spin-1/2 relativistic par-
ticles. Depending on the choice of Γ , we can have vector,
axial vector, or tensor density.

For non-relativistic systems for which the center-of-
mass is well-defined and fixed, one can define the phase-
space distributions by taking the expectation value of the
above Wigner operators in the R = 0 state. For the pro-
ton for which the recoil effect cannot be neglected, the
rest-frame state cannot be uniquely defined. Here we fol-
low Sachs, defining a rest-frame matrix element as that in
the Breit frame, averaging over all possible 3-momentum
transfers. Therefore, we construct the quantum phase-
space quark distribution in the proton as,

WΓ (r, k)=
1

2MN

∫
d3q

(2π)3
〈
q/2

∣∣∣ŴΓ (r, k)
∣∣∣− q/2

〉
(8)

=
1
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〉
,

where the plane-wave states are normalized relativisti-
cally. The most general phase-space distribution depends
on seven independent variables.

The only way we know how to probe the single-particle
distributions is through high-energy processes, in which
the light-cone energy k− = (k0− kz)/

√
2 is difficult to

measure, where the z-axis refers to the momentum direc-
tion of a probe. Moreover, the leading observables in these
processes are associated with the “good” components of
the quark (gluon) fields in the sense of light-cone quantiza-
tion [10], which can be selected by Γ = γ+, γ+γ5, or σ+⊥

where γ+ = (γ0+ γz)/
√

2. The direction of the gauge
link, nµ, is then determined by the trajectories of high-
energy partons traveling along the light-cone (1, 0, 0, −1)
[11,12]. Therefore, from now on, we restrict ourselves to
the reduced Wigner distributions by integrating out k− ,

WΓ (r,k) =
∫

dk−

(2π)2
WΓ (r, k) , (9)

with a light-cone gauge link is now implied. Unfortunately,
there is no known experiment at present capable of mea-
suring this 6-dimensional distribution which may be called
the master or mother distribution.

Further phase-space reductions lead to measurable
quantities. Integrating out the transverse momentum of
partons, we obtain a 4-dimensional quantum distribution

f̃Γ (r, k+) =
1

2MN
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e−iq·r
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×
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The matrix element under the integrals is what defines
the GPDs. More precisely, if one replaces k+ by Feyn-
man variable xp+ (p+ = Eq/

√
2, proton energy Eq =√

M2+ q2/4 ) and η− by λ/p+, the reduced Wigner dis-
tribution becomes the Fourier transformation of the GPD
FΓ (x, ξ, t)
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above expression, one finds pair creations and annihila-
tion terms. However, this is also true for the usual charge
density. Therefore we can speak of S(k) as a distribution
of vector charges and currents, but not a particle den-
sity. In nuclear physics where the non-relativistic dynam-
ics dominates, the proton spectral function in the nucleus
is positive definite and can be regarded as a particle den-
sity. The nuclear spectral function is directly measurable
through pick-up and knock-out experiments, in which E
and kare called the missing energy and missing momen-
tum, respectively (see for example [9]).

It is now easy to see that in the rest frame of the
proton, the Feynman quark distribution is

q(x) =
√

2
∫

d4k

(2π)4
δ(k0+ kz − xMN )S(k) . (4)

The x variable is simply a special combination of the
off-shell energy k0 and momentum kz. The parton dis-
tribution is the spectral function of quarks projected
along a special direction in the four-dimensional energy-
momentum space. The quarks with different k0 and kz

can have the same x, and moreover, the both x > 0 and
x < 0 distributions contain contributions from quarks and
anti-quarks.

3 Quantum phase-space distributions

Suppose we have a one-dimensional quantum mechanical
system with wave function ψ(x), the Wigner distribution
is defined as

W (x, p) =
∫

dηeipηψ∗(x − η/2)ψ(x + η/2) , (5)

where we have set ! = 1. When integrating out the coor-
dinate x, one gets the momentum density |ψ(p)|2, which
is positive definite. When integrating out p, the positive-
definite coordinate space density |ψ(x)|2 follows. For ar-
bitrary p and x, the Wigner distribution is not positive
definite and does not have a probability interpretation.
Nonetheless, for calculating the physical observables, one
can just take averages over the phase-space as if it is a
classical distribution

⟨Ô(x, p)⟩ =
∫

dxdp W (x, p)O(x, p) (6)

where the operators are ordered according to the Weyl
association rule. For a single-particle system, the Wigner
distribution contains everything there is in the quantum
wave function. For a many-body system, the Wigner dis-
tribution can be used to calculate the averages of all one-
body operators. Sign changes in the phase-space are a hint
that it carries non-trivial quantum phase information.

In QCD, the single-particle wave function must be re-
placed by (gauge-invariant) quantum fields, and hence it
is natural to introduce the Wigner operator,

ŴΓ (r, k) =
∫

d4ηeik·ηΨ(r − η/2)ΓΨ(r + η/2) , (7)

where r is the quark phase-space position and k the phase-
space four-momentum conjugated to the spacetime sepa-
ration η. Γ is a Dirac matrix defining the types of quark
densities because the quarks are spin-1/2 relativistic par-
ticles. Depending on the choice of Γ , we can have vector,
axial vector, or tensor density.

For non-relativistic systems for which the center-of-
mass is well-defined and fixed, one can define the phase-
space distributions by taking the expectation value of the
above Wigner operators in the R = 0 state. For the pro-
ton for which the recoil effect cannot be neglected, the
rest-frame state cannot be uniquely defined. Here we fol-
low Sachs, defining a rest-frame matrix element as that in
the Breit frame, averaging over all possible 3-momentum
transfers. Therefore, we construct the quantum phase-
space quark distribution in the proton as,

WΓ (r, k)=
1

2MN
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(2π)3
〈
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〉
(8)

=
1
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(2π)3
e− iq·r
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q/2
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〉
,

where the plane-wave states are normalized relativisti-
cally. The most general phase-space distribution depends
on seven independent variables.

The only way we know how to probe the single-particle
distributions is through high-energy processes, in which
the light-cone energy k− = (k0− kz)/

√
2 is difficult to

measure, where the z-axis refers to the momentum direc-
tion of a probe. Moreover, the leading observables in these
processes are associated with the “good” components of
the quark (gluon) fields in the sense of light-cone quantiza-
tion [10], which can be selected by Γ = γ+, γ+γ5, or σ+⊥

where γ+ = (γ0+ γz)/
√

2. The direction of the gauge
link, nµ, is then determined by the trajectories of high-
energy partons traveling along the light-cone (1, 0, 0, −1)
[11,12]. Therefore, from now on, we restrict ourselves to
the reduced Wigner distributions by integrating out k− ,

WΓ (r,k) =
∫

dk−

(2π)2
WΓ (r, k) , (9)

with a light-cone gauge link is now implied. Unfortunately,
there is no known experiment at present capable of mea-
suring this 6-dimensional distribution which may be called
the master or mother distribution.

Further phase-space reductions lead to measurable
quantities. Integrating out the transverse momentum of
partons, we obtain a 4-dimensional quantum distribution

f̃Γ (r, k+) =
1

2MN

∫
d3q

(2π)3
e−iq·r

∫
dη−

2π
eiη−k+

×
〈
q/2

∣∣Ψ(−η−/2)ΓΨ(η−/2)
∣∣− q/2

〉
. (10)

The matrix element under the integrals is what defines
the GPDs. More precisely, if one replaces k+ by Feyn-
man variable xp+ (p+ = Eq/

√
2, proton energy Eq =√

M2+ q2/4 ) and η− by λ/p+, the reduced Wigner dis-
tribution becomes the Fourier transformation of the GPD
FΓ (x, ξ, t)
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SIDIS for π on unpolarized target

CLAS12 projected, 4 <Q2< 5 GeV2
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above expression, one finds pair creations and annihila-
tion terms. However, this is also true for the usual charge
density. Therefore we can speak of S(k) as a distribution
of vector charges and currents, but not a particle den-
sity. In nuclear physics where the non-relativistic dynam-
ics dominates, the proton spectral function in the nucleus
is positive definite and can be regarded as a particle den-
sity. The nuclear spectral function is directly measurable
through pick-up and knock-out experiments, in which E
and kare called the missing energy and missing momen-
tum, respectively (see for example [9]).

It is now easy to see that in the rest frame of the
proton, the Feynman quark distribution is

q(x) =
√

2
∫

d4k

(2π)4
δ(k0+ kz − xMN )S(k) . (4)

The x variable is simply a special combination of the
off-shell energy k0 and momentum kz. The parton dis-
tribution is the spectral function of quarks projected
along a special direction in the four-dimensional energy-
momentum space. The quarks with different k0 and kz

can have the same x, and moreover, the both x > 0 and
x < 0 distributions contain contributions from quarks and
anti-quarks.

3 Quantum phase-space distributions

Suppose we have a one-dimensional quantum mechanical
system with wave function ψ(x), the Wigner distribution
is defined as

W (x, p) =
∫

dηeipηψ∗(x − η/2)ψ(x + η/2) , (5)

where we have set ! = 1. When integrating out the coor-
dinate x, one gets the momentum density |ψ(p)|2, which
is positive definite. When integrating out p, the positive-
definite coordinate space density |ψ(x)|2 follows. For ar-
bitrary p and x, the Wigner distribution is not positive
definite and does not have a probability interpretation.
Nonetheless, for calculating the physical observables, one
can just take averages over the phase-space as if it is a
classical distribution

⟨Ô(x, p)⟩ =
∫

dxdp W (x, p)O(x, p) (6)

where the operators are ordered according to the Weyl
association rule. For a single-particle system, the Wigner
distribution contains everything there is in the quantum
wave function. For a many-body system, the Wigner dis-
tribution can be used to calculate the averages of all one-
body operators. Sign changes in the phase-space are a hint
that it carries non-trivial quantum phase information.

In QCD, the single-particle wave function must be re-
placed by (gauge-invariant) quantum fields, and hence it
is natural to introduce the Wigner operator,

ŴΓ (r, k) =
∫

d4ηeik·ηΨ(r − η/2)ΓΨ(r + η/2) , (7)

where r is the quark phase-space position and k the phase-
space four-momentum conjugated to the spacetime sepa-
ration η. Γ is a Dirac matrix defining the types of quark
densities because the quarks are spin-1/2 relativistic par-
ticles. Depending on the choice of Γ , we can have vector,
axial vector, or tensor density.

For non-relativistic systems for which the center-of-
mass is well-defined and fixed, one can define the phase-
space distributions by taking the expectation value of the
above Wigner operators in the R = 0 state. For the pro-
ton for which the recoil effect cannot be neglected, the
rest-frame state cannot be uniquely defined. Here we fol-
low Sachs, defining a rest-frame matrix element as that in
the Breit frame, averaging over all possible 3-momentum
transfers. Therefore, we construct the quantum phase-
space quark distribution in the proton as,

WΓ (r, k)=
1

2MN

∫
d3q

(2π)3
〈
q/2

∣∣∣ŴΓ (r, k)
∣∣∣− q/2

〉
(8)

=
1

2MN

∫
d3q

(2π)3
e− iq·r

〈
q/2

∣∣∣ŴΓ (0, k)
∣∣∣− q/2

〉
,

where the plane-wave states are normalized relativisti-
cally. The most general phase-space distribution depends
on seven independent variables.

The only way we know how to probe the single-particle
distributions is through high-energy processes, in which
the light-cone energy k− = (k0− kz)/

√
2 is difficult to

measure, where the z-axis refers to the momentum direc-
tion of a probe. Moreover, the leading observables in these
processes are associated with the “good” components of
the quark (gluon) fields in the sense of light-cone quantiza-
tion [10], which can be selected by Γ = γ+, γ+γ5, or σ+⊥

where γ+ = (γ0+ γz)/
√

2. The direction of the gauge
link, nµ, is then determined by the trajectories of high-
energy partons traveling along the light-cone (1, 0, 0, −1)
[11,12]. Therefore, from now on, we restrict ourselves to
the reduced Wigner distributions by integrating out k− ,

WΓ (r,k) =
∫

dk−

(2π)2
WΓ (r, k) , (9)

with a light-cone gauge link is now implied. Unfortunately,
there is no known experiment at present capable of mea-
suring this 6-dimensional distribution which may be called
the master or mother distribution.

Further phase-space reductions lead to measurable
quantities. Integrating out the transverse momentum of
partons, we obtain a 4-dimensional quantum distribution

f̃Γ (r, k+) =
1

2MN

∫
d3q

(2π)3
e−iq·r

∫
dη−

2π
eiη−k+

×
〈
q/2

∣∣Ψ(−η−/2)ΓΨ(η−/2)
∣∣− q/2

〉
. (10)

The matrix element under the integrals is what defines
the GPDs. More precisely, if one replaces k+ by Feyn-
man variable xp+ (p+ = Eq/

√
2, proton energy Eq =√

M2+ q2/4 ) and η− by λ/p+, the reduced Wigner dis-
tribution becomes the Fourier transformation of the GPD
FΓ (x, ξ, t)
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above expression, one finds pair creations and annihila-
tion terms. However, this is also true for the usual charge
density. Therefore we can speak of S(k) as a distribution
of vector charges and currents, but not a particle den-
sity. In nuclear physics where the non-relativistic dynam-
ics dominates, the proton spectral function in the nucleus
is positive definite and can be regarded as a particle den-
sity. The nuclear spectral function is directly measurable
through pick-up and knock-out experiments, in which E
and kare called the missing energy and missing momen-
tum, respectively (see for example [9]).

It is now easy to see that in the rest frame of the
proton, the Feynman quark distribution is

q(x) =
√

2
∫

d4k

(2π)4
δ(k0+ kz − xMN )S(k) . (4)

The x variable is simply a special combination of the
off-shell energy k0 and momentum kz. The parton dis-
tribution is the spectral function of quarks projected
along a special direction in the four-dimensional energy-
momentum space. The quarks with different k0 and kz

can have the same x, and moreover, the both x > 0 and
x < 0 distributions contain contributions from quarks and
anti-quarks.

3 Quantum phase-space distributions

Suppose we have a one-dimensional quantum mechanical
system with wave function ψ(x), the Wigner distribution
is defined as

W (x, p) =
∫

dηeipηψ∗(x − η/2)ψ(x + η/2) , (5)

where we have set ! = 1. When integrating out the coor-
dinate x, one gets the momentum density |ψ(p)|2, which
is positive definite. When integrating out p, the positive-
definite coordinate space density |ψ(x)|2 follows. For ar-
bitrary p and x, the Wigner distribution is not positive
definite and does not have a probability interpretation.
Nonetheless, for calculating the physical observables, one
can just take averages over the phase-space as if it is a
classical distribution

⟨Ô(x, p)⟩ =
∫

dxdp W (x, p)O(x, p) (6)

where the operators are ordered according to the Weyl
association rule. For a single-particle system, the Wigner
distribution contains everything there is in the quantum
wave function. For a many-body system, the Wigner dis-
tribution can be used to calculate the averages of all one-
body operators. Sign changes in the phase-space are a hint
that it carries non-trivial quantum phase information.

In QCD, the single-particle wave function must be re-
placed by (gauge-invariant) quantum fields, and hence it
is natural to introduce the Wigner operator,

ŴΓ (r, k) =
∫

d4ηeik·ηΨ(r − η/2)ΓΨ(r + η/2) , (7)

where r is the quark phase-space position and k the phase-
space four-momentum conjugated to the spacetime sepa-
ration η. Γ is a Dirac matrix defining the types of quark
densities because the quarks are spin-1/2 relativistic par-
ticles. Depending on the choice of Γ , we can have vector,
axial vector, or tensor density.

For non-relativistic systems for which the center-of-
mass is well-defined and fixed, one can define the phase-
space distributions by taking the expectation value of the
above Wigner operators in the R = 0 state. For the pro-
ton for which the recoil effect cannot be neglected, the
rest-frame state cannot be uniquely defined. Here we fol-
low Sachs, defining a rest-frame matrix element as that in
the Breit frame, averaging over all possible 3-momentum
transfers. Therefore, we construct the quantum phase-
space quark distribution in the proton as,
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1
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where the plane-wave states are normalized relativisti-
cally. The most general phase-space distribution depends
on seven independent variables.

The only way we know how to probe the single-particle
distributions is through high-energy processes, in which
the light-cone energy k− = (k0− kz)/

√
2 is difficult to

measure, where the z-axis refers to the momentum direc-
tion of a probe. Moreover, the leading observables in these
processes are associated with the “good” components of
the quark (gluon) fields in the sense of light-cone quantiza-
tion [10], which can be selected by Γ = γ+, γ+γ5, or σ+⊥

where γ+ = (γ0+ γz)/
√

2. The direction of the gauge
link, nµ, is then determined by the trajectories of high-
energy partons traveling along the light-cone (1, 0, 0, −1)
[11,12]. Therefore, from now on, we restrict ourselves to
the reduced Wigner distributions by integrating out k− ,

WΓ (r,k) =
∫

dk−

(2π)2
WΓ (r, k) , (9)

with a light-cone gauge link is now implied. Unfortunately,
there is no known experiment at present capable of mea-
suring this 6-dimensional distribution which may be called
the master or mother distribution.

Further phase-space reductions lead to measurable
quantities. Integrating out the transverse momentum of
partons, we obtain a 4-dimensional quantum distribution
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The matrix element under the integrals is what defines
the GPDs. More precisely, if one replaces k+ by Feyn-
man variable xp+ (p+ = Eq/
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tribution becomes the Fourier transformation of the GPD
FΓ (x, ξ, t)

GPDs  H  E H, E

Probe 3D structure  2D – euclidean
space and 1D - momentum space.

Integrate over transverse 
momentum space
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above expression, one finds pair creations and annihila-
tion terms. However, this is also true for the usual charge
density. Therefore we can speak of S(k) as a distribution
of vector charges and currents, but not a particle den-
sity. In nuclear physics where the non-relativistic dynam-
ics dominates, the proton spectral function in the nucleus
is positive definite and can be regarded as a particle den-
sity. The nuclear spectral function is directly measurable
through pick-up and knock-out experiments, in which E
and kare called the missing energy and missing momen-
tum, respectively (see for example [9]).

It is now easy to see that in the rest frame of the
proton, the Feynman quark distribution is

q(x) =
√

2
∫

d4k

(2π)4
δ(k0+ kz − xMN )S(k) . (4)

The x variable is simply a special combination of the
off-shell energy k0 and momentum kz. The parton dis-
tribution is the spectral function of quarks projected
along a special direction in the four-dimensional energy-
momentum space. The quarks with different k0 and kz

can have the same x, and moreover, the both x > 0 and
x < 0 distributions contain contributions from quarks and
anti-quarks.

3 Quantum phase-space distributions

Suppose we have a one-dimensional quantum mechanical
system with wave function ψ(x), the Wigner distribution
is defined as

W (x, p) =
∫

dηeipηψ∗(x − η/2)ψ(x + η/2) , (5)

where we have set ! = 1. When integrating out the coor-
dinate x, one gets the momentum density |ψ(p)|2, which
is positive definite. When integrating out p, the positive-
definite coordinate space density |ψ(x)|2 follows. For ar-
bitrary p and x, the Wigner distribution is not positive
definite and does not have a probability interpretation.
Nonetheless, for calculating the physical observables, one
can just take averages over the phase-space as if it is a
classical distribution

⟨Ô(x, p)⟩ =
∫

dxdp W (x, p)O(x, p) (6)

where the operators are ordered according to the Weyl
association rule. For a single-particle system, the Wigner
distribution contains everything there is in the quantum
wave function. For a many-body system, the Wigner dis-
tribution can be used to calculate the averages of all one-
body operators. Sign changes in the phase-space are a hint
that it carries non-trivial quantum phase information.

In QCD, the single-particle wave function must be re-
placed by (gauge-invariant) quantum fields, and hence it
is natural to introduce the Wigner operator,

ŴΓ (r, k) =
∫

d4ηeik·ηΨ(r − η/2)ΓΨ(r + η/2) , (7)

where r is the quark phase-space position and k the phase-
space four-momentum conjugated to the spacetime sepa-
ration η. Γ is a Dirac matrix defining the types of quark
densities because the quarks are spin-1/2 relativistic par-
ticles. Depending on the choice of Γ , we can have vector,
axial vector, or tensor density.

For non-relativistic systems for which the center-of-
mass is well-defined and fixed, one can define the phase-
space distributions by taking the expectation value of the
above Wigner operators in the R = 0 state. For the pro-
ton for which the recoil effect cannot be neglected, the
rest-frame state cannot be uniquely defined. Here we fol-
low Sachs, defining a rest-frame matrix element as that in
the Breit frame, averaging over all possible 3-momentum
transfers. Therefore, we construct the quantum phase-
space quark distribution in the proton as,

WΓ (r, k)=
1

2MN

∫
d3q

(2π)3
〈
q/2

∣∣∣ŴΓ (r, k)
∣∣∣− q/2

〉
(8)

=
1

2MN

∫
d3q

(2π)3
e− iq·r

〈
q/2

∣∣∣ŴΓ (0, k)
∣∣∣− q/2

〉
,

where the plane-wave states are normalized relativisti-
cally. The most general phase-space distribution depends
on seven independent variables.

The only way we know how to probe the single-particle
distributions is through high-energy processes, in which
the light-cone energy k− = (k0− kz)/

√
2 is difficult to

measure, where the z-axis refers to the momentum direc-
tion of a probe. Moreover, the leading observables in these
processes are associated with the “good” components of
the quark (gluon) fields in the sense of light-cone quantiza-
tion [10], which can be selected by Γ = γ+, γ+γ5, or σ+⊥

where γ+ = (γ0+ γz)/
√

2. The direction of the gauge
link, nµ, is then determined by the trajectories of high-
energy partons traveling along the light-cone (1, 0, 0, −1)
[11,12]. Therefore, from now on, we restrict ourselves to
the reduced Wigner distributions by integrating out k− ,

WΓ (r,k) =
∫

dk−

(2π)2
WΓ (r, k) , (9)

with a light-cone gauge link is now implied. Unfortunately,
there is no known experiment at present capable of mea-
suring this 6-dimensional distribution which may be called
the master or mother distribution.

Further phase-space reductions lead to measurable
quantities. Integrating out the transverse momentum of
partons, we obtain a 4-dimensional quantum distribution

f̃Γ (r, k+) =
1

2MN

∫
d3q

(2π)3
e−iq·r

∫
dη−

2π
eiη−k+

×
〈
q/2

∣∣Ψ(−η−/2)ΓΨ(η−/2)
∣∣− q/2

〉
. (10)

The matrix element under the integrals is what defines
the GPDs. More precisely, if one replaces k+ by Feyn-
man variable xp+ (p+ = Eq/

√
2, proton energy Eq =√

M2+ q2/4 ) and η− by λ/p+, the reduced Wigner dis-
tribution becomes the Fourier transformation of the GPD
FΓ (x, ξ, t)

(Quantum phase-space quark distribution in the nucleon) 

~ ~

hard	scattering

soft	part	

p
p

factorization x ≈
xB

2 - xB

GPD H of special Importance as it gives 
access to the gravitational properties. 

D. Müller et al., F. Phys. 42,1994
X. Ji, PRL 78, 610, 1997
A. Radyushkin, PLB 380, 199611/4/19 25

X. Ji, Phys.Rev.D55, 7114 (1997)

M. V. Polyakov, Physics Letters B 555 (2003) 57 
I.V. Anikin and O.V. Teryaev, Phys.Rev.D76, 056007 (2007)  
M. Diehl and D.Y. Ivanov, Eur. Phys. J. C52, 919, (2007)  

Polarized DVCS probes GPDs. JLab @ 
12GeV has broad DVCS  program with 
polarized beams and polarized targets.  



Mapping DVCS to Gravity

DVCS makes mechanical properties accessible to experiment

G
G	p	=>	p

p

p

γ

γv

γγp =>	p

p

p

J=2

J=2

Graviton

2-photon

The 2-g field couples to the EMT the same way gravity does.
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§ Strong QCD was born in the transition from free quarks and gluons to bound hadrons. The structure of all hadrons is 
related to sQCD. Precise measurements can give the incentive to do the calculations. 

§ The N* spectrum: High precision data and multi-channel analyses enabled discovery of new N* states that fit by JP

values into the LQCD spectrum. Predicting the nucleon spectrum precisely is the challenge to sQCD. 

§ Nucleon and transition form factors: Approaches with traceable links to QCD have been successful in interpreting 
nucleon ground state and N* transitions FF, where dressed quarks are the active degrees of freedom.  In the 12 GeV era 
new measurements provide insights into the running quark mass and di-quarks as active dof.

§ Spin structure functions and moments: With the expected high precision of the 12 GeV measurements, they will be a 
fruitful testing ground for modeling sQCD. 

§ Nuclear 3D imaging: GPD-related Compton form factors and TMD related observables of protons and neutrons, should 
provide multi-dimensional insight into sQCD.  

§ Mechanical properties of particles: Mapping the normal and shear stress inside nucleons may relate to properties of 
confinement and is a novel testing ground of sQCD. Calculations within LQCD have been done- need higher precision.  

§ Advanced model approaches: LF RQM,  LC SR, hQCD, EFT.. continue to provide insights when sQCD has not been solved. 

§ Meson-baryon effects may be crucial in addressing the confinement challenge. Calculations based on EFT 
may provide new insight. 

So how do we get insight into sQCD?



Additional slides
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Probing the properties of the proton

Gravity
Vector Electro-

magnetism

PC
AC

Weak 
interaction

Tensor 

Qp µp

gA, gP

Mp Jp Dp

The structure of strongly interacting particles can be probed by means of  the 
other fundamental forces: electromagnetic, weak, and gravity.  

strong QCD

Dp is the last unknown global 
property of the proton.
(M. Polyakov, P. Schweitzer)
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DVCS from RG-A
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Kinematic reach E=10.6GeV Beam-Spin Asymmetries

5% of expected RG-A data t/Q2 < 0.25



The N/Δ Spectrum up to 2.2 GeV 2010 (PDG)
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The N/Δ Spectrum up to 2.2 GeV 2018 (PDG)
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