Today 7 years ago

On November 6, 2012, Charles Darwin received 4,000 write-in votes from voters in Athens-Clarke County, Georgia, protesting the reelection of an anti-science
 fundamentalist, Paul Broun, who ran unopposed in the general election as a U.S. Representative. Broun sat on the Science, Space and Technology Committee. Yet, on 27 Sep 2012, he called evolution and the Big Bang Theory, "lies straight from the pit of hell".

Exploring Strong QCD in the JLab Experiments of the 12 GeV Era

Volker D. Burkert Jefferson Laboratory

Workshop on Strong QCD from Hadron Structure Experiments

JLab @ 12 GeV Project

JLab @ 12 GeV Equipment

Hall D

GlueX

Strong QCD is born $\sim 1 \mu \mathrm{sec}$ after the Big Bang

Time after the Big Bang
T ~ 102 s: nuclei
T ~ 102 s: nuclei
T ~ 10-6 s: Nucleons
T ~ 10-6 s: Nucleons
T~ 10-9 s: QGP
T~ 10-9 s: QGP
$T \sim 10^{-6} \mathrm{~s}$: Transition from the QGP to Nucleons

Probing baryons to learn about strong QCD

- Energy spectrum - Search for new states \Rightarrow QGP to hadron transition, symmetries underlying hadronic matter
- Structure functions \Rightarrow Parton and spin distributions (1D)

- Form factors \Rightarrow Effective degrees of freedom versus distance (2D)
- Deeply exclusive/semi-inclusive processes \& GPD/TMD \Rightarrow 3D imaging of nucleon
- Moments of GPDs \Rightarrow Forces on quarks, confinement

From the H spectrum to the N^{*} spectrum

Niels Bohr, model of the hydrogen atom, 1913.

Spectral series of hydrogen

Analogy QCD \& QED => path to discoveries ?

- Understanding the hydrogen atom required understanding its spectrum of sharp energy levels
-> From the Bohr model to QED
-> Lamb shift, ...
- Understanding the proton requires mapping out its full energy spectrum of broad energy levels
-> From the Quark model to QCD
-> Accuracy of predictions should be commensurate with experiments, i.e. O (few MeV), to allow for surprises.

Establishing the N* spectrum - Precision \& Polarization are essential

Hyperon photoproduction $\gamma \mathbf{p} \rightarrow \mathbf{K}^{+} \boldsymbol{\Lambda} \rightarrow \mathbf{K}^{+} \mathbf{p} \pi^{-}$

D. Bradford et al. (CLAS), Phys.Rev. C75, 035205, 2007^{7}

Do new states correlate with predicted LQCD states?

R. Edwards et al., Phys.Rev. D84 (2011) 074508

Lowest J+ states 500-700 MeV high
Lowest J- states 200-300 MeV high
Ignoring the mass scale, the new states correlate with unoccupied JP levels in the LQCD spectrum.

Impact of new excited baryons

not included	
PDG 2016 with $*, * *$	
$N(1860)$	$N(1880$
$N(1895)$	
$N(2000)$	$N(2040)$
$N(2060)$	$N(2100)$
$N(2120)$	$N(2300)$
$N(2570)$	$N(2700)$
$\Delta(1750)$	$\Delta(1900)$
$\Delta(1940)$	$\Delta(2000)$
$\Delta(2150)$	$\Delta(2200)$
$\Delta(2300)$	$\Delta(2350)$
$\Delta(2390)$	$\Delta(2400)$
$\Delta(2750)$	$\Delta(2950)$
$N(1875)$	
	PDG
	2018 with

Search for strange baryons

Experiments at JLab at GlueX and at CLAS12 search for excited hyperon states of $\Xi^{0,-}(S=-2) \& \Omega^{-}(S=-3)$

Multi-strange baryons difficult to produce with photon beams.

Proposed $\mathbf{K}_{\text {long }}$ facility in Hall \mathbf{D} to study hyperons $K_{L} p$ interactions.

Reaction	Statistics (events)
$K_{L} p \rightarrow K_{S} p$	2.7 M
$K_{L} p \rightarrow \pi^{+} \Lambda$	7 M
$K_{L} p \rightarrow K^{+} \Xi^{0}$	2 M
$K_{L} p \rightarrow K^{+} n$	60 M
$K_{L} p \rightarrow K^{-} \pi^{+} p$	7 M

Expected statistics for some final states and 100 days data taking.

A fertile ground for LQCD calculations.

Generating mass as the universe cools

Dynamical generation of mass modeled on the Lattice and in DSE on single quarks.

Study this in measurements that are sensitive to the running quark mass.

Structure of e.m. FF of proton and neutron

- Encode charge and current densities in the light cone frame.
- Small ($\sim 10 \%)$ non-quark $\pi \mathrm{N}$ contributions at small Q ${ }^{2 .}$
- Strong sensitivity to the running quark mass function.
- Measurements up to higher Q^{2} planned or completed.

Structure of excited baryons

- charge transition densities
- effective degrees of freedom
- running quark mass
=> reveal nature of N^{*} states

Transition amplitudes of prominent resonances

DSE: J. Segovia, C.D. Roberts et al., PRC94 (2016) 042201 LF RQM: I. Aznauryan, V.B. arXiv:1603.06692 (2016)

LC SR: I. Anikin, V. Braun, N. Offen, PRD92 (2015) 014018

Roper $N(1440) 1 / 2^{+}$is the first radial excitation of the nucleon's quark core complemented by an external meson-baryon cloud. $N(1535) 1 / 2^{-}$is the first orbital excitation of the nucleon's quark core complemented by an external meson-baryon cloud.

Dressed quark-core behavior accessible at $\mathrm{Q}^{2}>\mathbf{2 - 4} \mathrm{GeV}^{2}$. MB terms more prominent than in elastic FF.

Probing the running quark mass at JLab12

Probe the transition from the interaction on dressed quarks to elementary quarks.

Search for Hybrid Nucleons N^{G}

Is glue manifest in the valence structure of excited nucleons?

- $q^{3} G$ baryons have same J ${ }^{\mathrm{P}}$ values as q^{3} baryons, but are more extended objects
- May measure Q^{2} dependence to separate - Program at CLAS12

11/4/19

- Calculations for electrocouplings of hybrid states are needed

Neutron structure $\mathrm{F}_{2} \mathrm{n} / \mathrm{F}_{2}{ }^{\mathrm{p}}$ and d/u-ratio

Measure $F_{2}{ }^{n} / F_{2}{ }^{p}$ to determine $d(x) / u(x)$

1) Measure cross section ratio ${ }^{3} \mathrm{H} /{ }^{3} \mathrm{He}$ of mirror nuclei (MARATHON, completed).
2) Detect low momentum protons to tag nearly unbound neutrons in deuterium (BoNuS12 in 2020)

track low energy protons in 5 Tesla mag. field

Parton distribution functions are governed by sQCD. Recent progress in theory (X. Ji) may enable computing $d(x) / u(x)$ in LQCD.

Projected results for $\mathrm{d}(\mathrm{x}) / \mathrm{u}(\mathrm{x})$ for 12 GeV experiments. 11/4/19

Polarized PDFs on $\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{d}},{ }^{3} \overrightarrow{\mathrm{He}}$ at 11 GeV

- Two experiments to measure polarized PDFs in the range $x \leq 0.8$ on p / d and on neutrons.
- A polarized target adapted to CLAS12 can achieve highprecision results on helicity asymmetries on $A_{1}{ }^{\mathrm{p}}$ and $A_{1}{ }^{\mathrm{d}}$ by employing longitudinally polarized NH_{3} and ND_{3} targets.
- Similar coverage is projected with the use of a polarized $\mathrm{He}-3$ target in Hall A.

Beam-Target double spin asymmetry

With the expected precision a serious effort should be launched to compute $\mathrm{A}_{1}(\mathrm{x})$

Moments of Spin Structure Functions

- Inclusive polarized DIS data obtained at JLab@6GeV have permitted evaluation of the moments at low and intermediate Q^{2}.
- At 12 GeV the moments will be measured up to $Q^{2}=6$ GeV^{2} with much improved statistical precision.
- With both proton and neutron measured, the Bjorken sum can be evaluated, which relates to the integral.

$$
\Gamma_{1}^{p-n}\left(Q^{2} \rightarrow \infty\right)=\frac{1}{6} g_{\mathrm{A}} .
$$

What projections from LQCD or sQCD are expected?

Kinematic coverage for Imaging @ 11GeV

A flagship program of structure studies in deeply exclusive and semi-inclusive processes.

Transverse Momentum Structure of Nucleon - TMDs

(Quantum phase-space quark distribution in the nucleon)

Wigner Function

$$
W_{\Gamma}(\mathbf{r}, k)=\frac{1}{2 M_{N}} \int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} \mathrm{e}^{-i \mathbf{q} \cdot \mathbf{r}}\langle\mathbf{q} / 2| \hat{\mathcal{W}}_{\Gamma}(0, k)|-\mathbf{q} / 2\rangle
$$

$$
W_{\Gamma}(\mathbf{r}, \mathbf{k})=\int \frac{d k^{-}}{(2 \pi)^{2}} W_{\Gamma}(\mathbf{r}, k)
$$

Integrate over spatial dimensions

	arization			
	N 9	U	L	T
	U	\mathbf{f}_{1}		\mathbf{h}_{1}^{\perp}
	L		g_{1}	$\mathrm{h}_{1 \mathrm{~L}}^{\perp}$
	T	$\mathrm{f}_{1 \mathrm{~T}}^{\perp}$	$\mathrm{g}_{1 \mathrm{~T}}$	$\mathbf{h}_{1} \mathbf{h}_{1 T}^{\perp}$

JLab has planned a complete SIDIS program with π / K to access quark TMDs

SIDIS for π on unpolarized target

$\mathbf{N}^{\mathbf{q}}$	\mathbf{U}	L	\mathbf{T}
\mathbf{U}	\mathbf{f}_{1}		h_{1}^{\perp}
			g_{1}
	$h_{1 L}^{\perp}$		
	$f_{1 T}^{\perp}$	$g_{1 T}$	$\mathbf{h}_{1} h_{1 T}^{\perp}$

$$
\begin{aligned}
& \frac{d \sigma}{d x_{B} d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}= \\
& \frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x_{B}}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right. \\
& \left.\left.\quad+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right)+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}\right\},
\end{aligned}
$$

CLAS12 projected, $4<\mathrm{Q}^{2}<5 \mathrm{GeV}^{2}$

Large kinematic reach

Hall C

High precision

SIDIS in 2-pion production

ep $\rightarrow \mathbf{e}^{\prime} \pi^{+} \pi^{-} \mathbf{X}$

- Provides more direct insight into hadronic correlations.
- The comparison with Monte Carlo simulations indicates that there is a significant fraction of pions from VM decays.
- Precision data point to a fruitful field for sQCD/LQCD applications, especially for moments of observables.

Momentum Tomography with Sivers function

Sivers function for d-quarks extracted from model simulations with a transverse polarized ${ }^{3} \mathrm{He}$ target.

Computable within sQCD/LQCD ?

d-quark momentum tomography for Sivers function. The d-quark momentum density shows a distortion and shift in $\mathbf{k}_{\mathbf{x}}$. A non-zero $\delta \mathrm{k}_{\mathrm{x}}$ value requires a non-zero orbital angular momentum.

Generalized Parton Distributions

(Quantum phase-space quark distribution in the nucleon)
$W_{\Gamma}(\mathbf{r}, k)=\frac{1}{2 M_{N}} \int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} \mathrm{e}^{-i \mathbf{q} \cdot \mathbf{r}}\langle\mathbf{q} / 2| \hat{\mathcal{W}}_{\Gamma}(0, k)|-\mathbf{q} / 2\rangle$,

Integrate over transverse momentum space

GPDs $\boldsymbol{H} \boldsymbol{E} H, E$

Probe 3D structure 2D - euclidean space and 1D - momentum space.

Polarized DVCS probes GPDs. JLab @ 12 GeV has broad DVCS program with polarized beams and polarized targets.

GPD H of special Importance as it gives access to the gravitational properties.
M. V. Polyakov, Physics Letters B 555 (2003) 57
I.V. Anikin and O.V. Teryaev, Phys.Rev.D76, 056007 (2007)
M. Diehl and D.Y. Ivanov, Eur. Phys. J. C52, 919, (2007)

Mapping DVCS to Gravity

The $2-\gamma$ field couples to the EMT the same way gravity does.

So how do we get insight into sQCD?

- Strong QCD was born in the transition from free quarks and gluons to bound hadrons. The structure of all hadrons is related to sQCD. Precise measurements can give the incentive to do the calculations.
- The \mathbf{N}^{*} spectrum: High precision data and multi-channel analyses enabled discovery of new N^{*} states that fit by J ${ }^{\mathrm{P}}$ values into the LQCD spectrum. Predicting the nucleon spectrum precisely is the challenge to sQCD.
- Nucleon and transition form factors: Approaches with traceable links to QCD have been successful in interpreting nucleon ground state and N^{*} transitions FF, where dressed quarks are the active degrees of freedom. In the 12 GeV era new measurements provide insights into the running quark mass and di-quarks as active dof.
- Spin structure functions and moments: With the expected high precision of the 12 GeV measurements, they will be a fruitful testing ground for modeling sQCD.
- Nuclear 3D imaging: GPD-related Compton form factors and TMD related observables of protons and neutrons, should provide multi-dimensional insight into sQCD.
- Mechanical properties of particles: Mapping the normal and shear stress inside nucleons may relate to properties of confinement and is a novel testing ground of sQCD. Calculations within LQCD have been done- need higher precision.
- Advanced model approaches: LF RQM, LC SR, hQCD, EFT.. continue to provide insights when sQCD has not been solved.
- Meson-baryon effects may be crucial in addressing the confinement challenge. Calculations based on EFT may provide new insight.

Additional slides

Probing the properties of the proton

The structure of strongly interacting particles can be probed by means of the other fundamental forces: electromagnetic, weak, and gravity.

DVCS from RG-A

Kinematic reach $\mathrm{E}=10.6 \mathrm{GeV}$ clos
 Beam-Spin Asymmetries

The N/ Δ Spectrum up to $2.2 \mathrm{GeV} 201 \theta$ (PDG)

